
Practical Improvements to User Privacy

in Cloud Applications

Raymond Cheng

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2017

Reading Committee:

Thomas Anderson, Chair

Arvind Krishnamurthy, Chair

Tadayoshi Kohno

Program Authorized to Offer Degree:
Paul G. Allen School of Computer Science and Engineering

c©Copyright 2017

Raymond Cheng

University of Washington

Abstract

Practical Improvements to User Privacy
in Cloud Applications

Raymond Cheng

Co-Chairs of the Supervisory Committee:
Professor Thomas Anderson

Paul G. Allen School of Computer Science and Engineering

Professor Arvind Krishnamurthy
Paul G. Allen School of Computer Science and Engineering

As the cloud handles more user data, users need better techniques to protect their privacy from

adversaries looking to gain unauthorized access to sensitive data. Today’s cloud services offer weak

assurances with respect to user privacy, as most data is processed unencrypted in a centralized loca-

tion by systems with a large trusted computing base. While current architectures enable application

development speed, this comes at the cost of susceptibility to large-scale data breaches.

In this thesis, I argue that we can make significant improvements to user privacy from both

external attackers and insider threats. In the first part of the thesis, I develop the Radiatus ar-

chitecture for securing fully-featured cloud applications from external attacks. Radiatus secures

private data stored by web applications by isolating server-side code execution into per-user sand-

boxes, limiting the scope of successful attacks. In the second part of the thesis, I focus on a simpler

messaging application, Talek, securing it from both external and insider threats. Talek is a group

private messaging system that hides both message contents as well as communication patterns from

an adversary in partial control of the cloud.

Both of these systems are designed to provide better security and privacy guarantees for users

under realistic threat models, while offering practical performance and development costs. This

thesis presents an implementation and evaluation of both systems, showing that improved user

privacy can come at acceptable costs.

TABLE OF CONTENTS

Page

List of Figures . iii

Chapter 1: Introduction . 1

1.1 User Privacy in the Cloud . 2

1.2 Thesis Overview . 4

1.3 Securing Existing Cloud Applications from External Threats 4

1.4 Designing an Oblivious Messaging Service . 5

1.5 Summary of Contributions . 6

Chapter 2: Background and Related Work . 7

2.1 Existing Cloud Applications . 7

2.2 External Threats . 11

2.3 Insider Threats . 20

2.4 Summary . 33

Chapter 3: Securing Cloud Applications from External Intrusion 35

3.1 Radiatus Design . 38

3.2 Implementation . 49

3.3 Evaluation . 51

3.4 Summary . 58

Chapter 4: An Efficient and Scalable Oblivious Messaging Service 60

4.1 Background . 63

4.2 Talek Design . 69

4.3 Talek with Idle Users . 75

4.4 Oblivious Logging . 81

4.5 Private Notifications . 88

4.6 Implementation . 89

4.7 Evaluation . 89

i

4.8 Summary . 101

Chapter 5: Conclusion . 102

Bibliography . 105

ii

LIST OF FIGURES

Figure Number Page

2.1 Architecture of a cloud service . 10

2.2 Source code of a FreePBX bug . 12

2.3 List of common web-related vulnerabilities . 13

2.4 Web hacking incident database summary . 14

2.5 Comparison of web server defenses . 16

2.6 User sandboxing in web applications . 18

2.7 Comparison of privacy-preserving systems . 25

2.8 Private information retrieval example . 27

3.1 Radiatus Architecture . 36

3.2 Example of a Radiatus application . 41

3.3 Example of a Radiatus message type . 43

3.4 Radiatus APIs . 45

3.5 Complexity of Radiatus applications . 50

3.6 Security analysis of severe web vulnerabilities . 52

3.7 Throughput comparison of web frameworks . 56

3.8 Scaling throughput on a Radiatus cluster . 57

4.1 Talek threat model . 64

4.2 Talek architecture . 70

4.3 Summary of Talek interfaces and client/server state 71

4.4 Table of variables . 74

4.5 Oblivious logging data structures . 77

4.6 Talek server-side pseudocode . 85

4.7 Talek client pseudocode . 86

4.8 Log Handle . 87

4.9 Message Payload . 87

4.10 Talek log handle and message schemas . 87

4.11 Cost of Talek operations . 91

iii

4.12 Throughput of the Talek system . 93

4.13 Private messaging throughput comparison . 95

4.14 Asymptotic complexity of private messaging systems 96

4.15 End-to-end latency of messages in Talek . 98

iv

ACKNOWLEDGMENTS

First, I would like to thank my advisers, Thomas Anderson and Arvind Krishnamurthy, for

their sage advice, continued encouragement, and support of my wide interests. Tom’s dedication to

his students, enthusiasm to learn, and insightful perspective is a source of daily inspiration. Arvind

has an electric positive energy and masterful approach to research that has taught me a great deal.

Both continued to support me, even as my interests and pursuits took unexpected turns. I am

forever indebted to them for this deeply impactful graduate school experience. I am lucky to have

worked with Will Scott, a trusted collaborator and good friend. In addition to drawing from his

can-do attitude and ninja coding skills, I cherish the many adventures we had together. I would also

like to thank Franzi Roesner, Yoshi Kohno, Xi Wang, Hank Levy, Dan Ports, and all the students in

the Networks Lab, Systems Lab, and Security Lab, who introduced me to new topics and different

ways to thinking. Our lab could not function as well as it does without Melody Kadenko.

I am fortunate to have found fantastic advising and mentorship from Bryan Parno and Jon

Howell. I am indebted to their generous and valuable feedback. I also want to thank Lucas Dixon

and the incredible team at Jigsaw. Working with them was one of my most memorable experiences

in graduate school, where I applied myself towards a worthy mission with a team who would turn

out to be great friends. Thank you to Lidong Zhou, Fan Yang, Michael Schueppert, Hila Becker,

and Mayur Thakur for wonderful research experiences.

In college, I was lucky to take classes and begin research with Frans Kaashoek, Chris Lesniewski-

Laas, Patrick Winston, and Richard Fletcher. Their classes inspired me to pursue graduate school

and my work continues to be influenced by their wisdom.

Many friends contributed to a memorable time in Seattle. Thanks for all the fun memories

and joining me in many adventures. I thank my family for their unconditional love and support.

Finally, my heartfelt thanks to Clarice. You always believed in me, even when I doubted myself. I

hope you know I will always believe in you too.

v

1

Chapter 1

INTRODUCTION

The cloud provides a highly-available platform for shared computation and storage that powers a

wide spectrum of applications for users around the world. As a consequence, people are increasingly

relying on the cloud, both in in their professional and personal lives. The biggest cloud applications

see billions of monthly users [105, 36]. The cloud’s role as a platform for processing and storing data

between devices and users will only grow in importance as users become more connected, devices

gain network access, and applications build multi-user features.

As the cloud plays an increasingly important role in our lives, users are looking for stronger

privacy assurances that their data is only accessible by parties expected by its users. This expecta-

tion becomes even more important as more cloud-supported digital devices augment our experience

in traditionally private spaces, such as our homes. Privacy and security are equally important for

organizations that require secrecy, including companies, governments, and militaries.

Unfortunately, most cloud-based applications provide weak assurances with respect to user pri-

vacy. Developers often design for functionality and user experience, rather than privacy. Numerous

studies have shown that people often expect stronger privacy guarantees from applications than

they actually provide in practice [155, 240, 158, 196].

Privacy is violated when adversaries gain unauthorized access to user data. Because the cloud

stores valuable data generated by users, usually in unencrypted form, adversaries have an incentive

to exploit the data for their own purposes. Worse, privacy violations often occur in ways that are

invisible to the end user.

Both criminals and nation-state actors are increasingly adept at breaking into cloud-hosted

services. Because modern cloud software is complex, vulnerabilities allow hackers to launch remote

attacks to gain access and steal data from the cloud. These episodes are frequent and often occur

for long periods of time before being disclosed to the public. In 2017, studies have shown that the

likelihood of an organization facing at least one data breach incident within the next 24 months is

2

27.7% [191]. Current security practices have dire consequences for both cloud applications and end

users. For companies operating cloud applications, the average cost of a data breach is approaching

$4M [191]. These figures can grow based on the user’s location and the types of data stored. Just

in 2014, 17.6 million Americans, 7% of US residents over the age of 16, were the victims of identity

theft [228].

Another type of powerful threat and a significant source of privacy violations are governments.

Cloud-based businesses are legally bound by the laws and regulation of the countries in which

they operate and serve. For example, governments can request user data and block disclosure of

the request [229, 230, 231]. The cloud’s concentration of information about users has an adverse

effect on the greater society, as governments increasingly request cloud data to target individuals

and quash dissent. Out of the total world population, an estimated 67% live in a country where

criticism of the government, military, or ruling family is subject to censorship, and 27% live in a

country where people have been arrested for publishing, sharing, or liking content on Facebook [17].

In these countries, governments data requests about users have grown dramatically [20, 14, 2].

In this thesis, I assume the developer of the application to be trusted and have a mutual

interest with their users in preventing third parties from accessing users’ data. In the case where

the application developer cannot be trusted, I refer to related work on restricting applications [117,

247, 151].

1.1 User Privacy in the Cloud

Average users want to be able to easily and privately communicate sensitive information through

the public cloud with their friends, family, and associates. Users should be able to leverage the

cloud for its highly available storage and networking, while being assured that no parties other than

participating users and the applications they trust will gain any knowledge of the nature of a user’s

actions, including data contents, time of delivery, and participants. Assuming that a user’s device

has not been compromised, the cloud should provide a safe space for people to freely communicate,

associate, and organize, without fear of surveillance and repercussion.

In order to achieve this goal, we must formally understand how user privacy is compromised

in a modern cloud system and design new systems that reduce or eliminate the attack surface.

3

Thus, I consider the roles of all of the actors in the system as part of the threat model. Users

interact with their personal computing devices, each running software written by a client developer.

These devices communicate over the Internet to the cloud, running software written by the server

developer. I characterize an adversary in the threat model as having full control over some subset

of these entities, which are called untrusted resources.

In this thesis, I consider two major classes of adversaries to user privacy. External threats include

malicious users on the Internet that try to remotely attack the cloud. They do not have any visibility

or control over the cloud or honest users, beyond what is publicly accessible on the Internet. These

malicious users do not necessarily run the official client software and they can craft arbitrary

network packets to attack the cloud service. Insider threats involve malicious actors operating with

the privileges of the cloud operator. These threats can monitor all communication and actively

manipulate the cloud’s behavior in order to attack honest users of the system. Insider threats do

not necessarily need to come in the form of malicious employees within the cloud company. They

can also come in the form of government mandates, as well as malware running on the system. In

these cases, the cloud takes an active role in violating user privacy.

A sufficiently powerful adversary could attack users in more fundamental ways. For example,

an adversary could compel monitoring of an end-user’s device. An adversary could also control

the physical equipment and deny a user’s access to the cloud by turning off the network. In this

thesis, I make the assumption that devices of honest users are trusted and that the cloud is always

reachable. I focus on external and insider threats to user data stored in the cloud.

Previous efforts to offer strong cloud privacy from both external and insider threats, while offer-

ing practical performance and supporting a wide range of applications, have seen limited success.

Techniques to offer strong security guarantees for arbitrary applications have been shown to have

prohibitive server and network costs [114, 48, 119, 121, 181]. Other efforts to improve performance

come at the cost of relaxed security goals [193, 194, 41, 43, 210, 232, 84, 85, 86, 149, 245]. Weaker

security can put users at risk, such as if the system’s activity can be visible to the adversary over

time [91, 141, 163]. In Chapter 2, I expand on existing techniques in the context of our goals of

security, performance, and application support.

In this thesis, I focus on two separate cases of cloud security and user privacy. In the first, I

4

consider an arbitrary cloud application and focus on securing it from external threats. In the second,

I consider a simpler messaging application where security from both external and insider threats

can be formally proved. In both cases, I show that we can improve security and achieve practical

performance, validated by experiments on real implementations. As an additional constraint, I

focus only on building systems for average users running commodity computers on the Internet.

1.2 Thesis Overview

The thesis of this work is that for realistic threat models, we can significantly improve user privacy

for fully-featured cloud applications as well as for messaging, while offering reasonable performance.

Described in greater detail below, I first consider the case of securing arbitrarily complex cloud

applications from external threats. In practice, these systems involve millions of lines of potentially

buggy code, which when exploited, can allow external intruders to quickly amplify their attacks

into large-scale data breaches. If we can assume that users trust the cloud and server-side software

with their data, then better isolation techniques can be applied to limit the scope and impact of

external attacks.

In the second half of the thesis, I consider how to design a simpler messaging application that

is robust to both external and insider threats. In other words, even if an adversary has control of

the cloud, passively monitoring communication and actively manipulating its behavior, we want

a solution that can robustly provide private messaging, where it can be formally proved that the

adversary learns nothing about the messages traversing their portion of the cloud. From the per-

spective of the adversary, all it should see is useless noise. In this case, both the cloud service and

remote attackers are trying to learn both the contents of messages, as well as communication pat-

terns to see which users are communicating. While these techniques do not generalize to arbitrary

applications, it allows us to design a protocol that can offer both practical performance as well as

strong security guarantees.

1.3 Securing Existing Cloud Applications from External Threats

Initially, I focus on the problem of securing existing cloud applications from external intrusion.

Cloud applications are a frequent target of successful attacks. In most programming frameworks,

5

the damage is amplified by the fact that application code is responsible for security enforcement.

Code runs on behalf of the cloud service, rather than with the limited privileges of a user. Thus,

vulnerabilities in the complex application code can lead uninhibited access to code, data, and other

service resources.

In Chapter 3, I design and evaluate Radiatus, a shared-nothing programming framework where

application-specific computation and storage on the server is contained within a sandbox with

the privileges of the end-user. By strongly isolating users, user data and service availability can

be protected from application vulnerabilities. Attacks that exploit application vulnerabilities are

isolated to the sandbox assigned to the attacker.

To make Radiatus practical at the scale of modern applications, I introduce a distributed

capabilities system to allow fine-grained secure resource sharing across the many distributed services

that compose an application. I further analyze the strengths and weaknesses of a shared-nothing

architecture. This architecture protects applications from a large class of vulnerabilities, but it

comes at the cost of added overhead of 60.7% per server and an additional 31MB of memory per

active user. I demonstrate that the system can scale to 20K operations per second on a 500-node

AWS cluster.

1.4 Designing an Oblivious Messaging Service

With Radiatus, I assume that the cloud is trusted. To generalize to a stronger threat model to

include insiders in the cloud, I restrict the scenario to a narrower programming model, where the

cloud only serves as a message broker. This requires techniques to privately communicate, even

when the cloud service is untrustworthy. Designing systems that are robust to this threat model is

increasingly compelling as privacy-violating adversaries gain more sophisticated capabilities.

While existing end-to-end encryption techniques can protect the contents of a message, it is also

important to hide the communication patterns, such as who is communicating with whom. In Chap-

ter 4, I describe Talek, a private group messaging system that sends messages through potentially

untrustworthy servers, while hiding both data content and the communication patterns among its

users. Talek is designed with two goals that distinguish it from the prior work in private messag-

ing. First, Talek is designed with the strong security goal of access sequence indistinguishability,

6

where clients leak no information to adversarial servers that might help an adversary distinguish

between two arbitrary-length client access sequences. Second, Talek aims to be practical, offering

3–4 orders of magnitude greater performance over related work with similar security goals. To

achieve these properties, I introduce two novel techniques. Oblivious logging is a mechanism for

supporting private reads and writes to shared logs stored on servers without coordination between

clients. Private notifications provide a private and efficient mechanism for users to learn which logs

have new messages without polling.

I demonstrate a 3-server Talek cluster that achieves throughput of 566K messages per minute

with 5.57-second end-to-end latency on commodity servers.

1.5 Summary of Contributions

In the course of investigating techniques to secure and improve privacy in cloud-based communica-

tion systems, this dissertation makes the following high-level contributions:

1. A set of techniques for securing server-side application code in the cloud. By leveraging

lightweight isolation mechanisms, I design a framework that offers competitive performance

compared to existing application frameworks, while limiting the potential adverse impact of

remote attackers.

2. A new approach for private messaging that offers strong privacy in the face of a persistent

active adversary with control of parts of the cloud. I detail a set of formal security definitions

for private messaging and prove that our protocol satisfies these definitions.

3. Implementations that validate our hypothesis and that demonstrate practical performance

for reasonable workloads.

7

Chapter 2

BACKGROUND AND RELATED WORK

How can developers improve the security and privacy of their cloud applications, while still

offering practical performance for users? In this chapter, we survey existing techniques for securing

cloud-based applications against external and insider threats. These techniques help developers

provide stronger assurances that user data is only accessible by intended parties, and not by hackers

and criminals.

The chapter begins by describing the typical architecture of existing cloud applications (Sec-

tion 2.1). We then describe external threats to cloud applications, how information is leaked in

external attacks, and previous defenses, such as monitoring and isolation mechanisms (Section 2.2).

Next, we characterize insider threats and techniques for protecting user data from adversaries in

control of the cloud. We describe encryption techniques for ensuring confidentiality of data contents.

However, encrypting data is not sufficient for ensuring user privacy, because a user’s pattern of usage

can also leak information. We then describe a set of techniques for hiding communication patterns

(Section 2.3).

2.1 Existing Cloud Applications

In order to understand how information is leaked, it is important to first understand the typical

architecture of a modern cloud application. While there are many ways that cloud applications can

be constructed, this section defines common design patterns and entities. We begin by describing

the clients and usage model (Section 2.1.1). Then, we discuss the programming model of server-side

logic (Section 2.1.2), the execution environment, and how these systems scale to support millions

of users (Section 2.1.3). This architecture offers many avenues for surveillance, as we discuss in

Sections 2.2 and 2.3.

8

2.1.1 Clients

Consider a user who installs a new cloud-based application onto his/her device. This application

will consist of a user interface, some background processes (e.g. to retransmit lost messages), and a

number of third-party libraries (e.g. advertising). While the operating system may limit the appli-

cation’s access to data from other applications [19, 21, 132, 169, 131, 236] and physical resources,

such as the camera, applications are typically unrestricted in terms of the computations that can

run on the client device (up to the battery life of the device). Furthermore, most modern operat-

ing systems do not limit the application from sending network requests to arbitrary destinations.

This is because a typical application will communicate with a variety of cloud services to support

application functions, such as to synchronize data, display ads, and report telemetrics.

Client-side applications come in a number of forms, including applications on a mobile phone,

webpages loaded in a browser, and those that run in Internet-of-Things (IoT) devices. In each

case, developers write code that runs on a user’s end-device. In practice, cloud applications need

to address several questions:

Where is data stored? Depending on the application, user data can be either stored on a remote

server, on the local device, or both. For applications that focus on rich features, such as personal

assistants, the application may store raw data on the server to be processed, providing augmented

services. On the other end of the spectrum, privacy-conscious applications may store data only on

the local device, using the server only as a temporary message buffer.

How do users know that client applications do not leak information? In practice, users

often do not have any technical means to ensure that data is not leaked from their devices in

unexpected ways. Instead, users rely on the reputations of the operating system, application store,

and cloud application to protect their security and privacy.

Securing clients and user devices is an active area of research. Some approaches include auditing

applications to ensure they behave correctly, using verification tools to prove correctness [242, 128],

and monitoring for proper behavior [200]. Because this thesis focuses on server-side security and

privacy, client-side security solutions are complementary to this work. In this thesis, we assume

that honest clients can be trusted and that they do not leak user data.

9

2.1.2 Cloud Servers

Developers program cloud services to service incoming requests from clients. This Internet-facing

interface typically intermingles authentication, user actions, and content fetches. The server devel-

oper must properly handle requests, administer access control and prevent leakage of information.

Storage, caching, and user authentication are typically implemented as libraries. Developer speed is

a critical issue, but this expediency comes at the cost of an increased number and severity of bugs.

For example, in the case of a social network, one may store a list of users and their permissions in a

relational database. When a user requests a feed of recent content, the server assembles a response

by querying the database for recent content, filtering the content with access control policies in

another table, and populating a template. Furthermore, the application must be written in a way

such that server-side capacity can be added easily.

When the cloud service responds with webpages using HTTP, the service can also be called a web

application. Web frameworks describe the programming framework used to build web applications,

which span both server and client. HTTP-based web frameworks have become a widely prevalent

programming model for cloud-based applications [192, 180].

2.1.3 Scaling a Cloud Application

In the simplest cloud service, a developer can deploy a cloud service with just a single machine.

However, single machines are limited in their processing capability and availability.

Horizontal scaling refers to the practice of deploying additional machines to accommodate larger

numbers of users as an application grows in popularity. Figure 2.1 illustrates the architecture of a

typical medium-sized cloud service. When a client makes a request to the service, a load balancer

distributes incoming requests across servers running identical copies of the application. Physical

resources can be dynamically scaled up or down to meet demand.

In large-scale cloud services, a developer may also deploy to multiple data centers around the

world. By geo-replicating, cloud services benefit from better resilience to failures and disasters.

Furthermore, clients can be routed to the nearest data center, resulting in better performance for

the user.

10

Global
Shared Database

User
A

Memcache

Global
App Logic

+
Access
Control

+
Auth

Load Balancer

Datacenter

. . . .

Cloud Service
Clients

User
B

User
C

User
D

User
E

Global
App Logic

+
Access
Control

+
Auth

Global
App Logic

+
Access
Control

+
Auth
Server 3Server 2Server 1

SocketsSocketsSockets

Figure 2.1: Layout of a traditional cloud service. Typically, application logic is treated as

part of the trusted computing base with access to global state.

11

2.1.4 Composing Cloud Services

As cloud applications grow in code complexity, large monolithic applications may split functionality

into multiple smaller services in a service-oriented architecture (SOA). For example, site search

may be written and maintained by a different product group from the shopping cart. In turn, these

services may be supported by a separate database service. In this example, each individual service

is typically written in the same model as above.

Modern cloud applications integrate many internal services with a front-end web service to

service user requests. In practice, all of these individual cloud services can be developed and

operated by different companies. Modern cloud services exist for a variety of functions, such as

storage, caching, search, video processing, analytics, and machine learning.

2.2 External Threats

In the following section, we focus on external threats to user data. We characterize the threat

model and outline prior approaches to providing privacy despite these threats.

2.2.1 Threat Model

External threats can be modeled as malicious clients on the network. Like honest clients, they

send requests to the cloud service, but they do not necessarily conform to specified protocols. The

attacker’s goal is to craft packets to trigger unexpected code paths in the cloud service. For example,

malicious clients can send random requests to try to trigger unexpected behavior or they can craft

software exploits to exploit software vulnerabilities in the cloud service.

Understanding Remotely Exploitable Cloud Vulnerabilities

Because cloud applications are under active development and the server software is part of the

trusted computing base, developers often inadvertently introduce vulnerabilities that can be remote

exploited. For example in 2013, Snapchat introduced a vulnerability in their “Find My Friends”

feature that allowed attackers to enumerate the entire set of Snapchat users and their phone num-

bers [34]. The vulnerability allowed any user to request the username corresponding to an input

phone number using the /ph/find friends HTTP endpoint without limit. Attackers enumerated

12

1 if (isset($_COOKIE[’ari_auth ’])) {

2 $buf = unserialize(stripslashes($_COOKIE[’ari_auth ’]));

3 list($data ,$chksum) = $buf;

4 }

Figure 2.2: FreePBX (versions ≤2.9.0.9), a VoIP server, improperly sanitizes the ari auth

cookie before calling unserialize in htdocs ari/includes/login.php. Because unserialize

can import arbitrary PHP objects, this vulnerability can be exploited to execute arbitrary

code (Sept. 2014).

all possible phone numbers in a brute force attack that revealed the entire list of usernames and

their corresponding phone numbers.

Because request handler code is executed on behalf of the service, rather than as the user, remote

code execution vulnerabilities are particularly devastating. These vulnerabilities allow attackers to

upload and run arbitrary code, giving adversaries full control of the cloud service. For example,

attackers could upload code to exfiltrate data from the database, take the service down, change the

cloud service’s behavior, or plant malware.

In order to understand how external attackers can gain remote code execution, Figure 2.2

highlights an example of a subtle code injection vulnerability in FreePBX, an open source VoIP

server, as exploited on Sept. 2014 [174]. An improperly sanitized HTTP cookie, ari auth, passed

into unserialize() allows an attacker to import arbitrary PHP objects into the context. Code

injection vulnerabilities have led to numerous data leaks and service disruptions in web applica-

tions [38, 26, 88, 47, 239]. For example, attackers in 2014 were able to write files and execute

arbitrary code on Flickr servers by exploiting an injection vulnerability in a new photo books

feature [239].

Survey of the National Vulnerability Database

In order to understand the relative frequency of different types of web-related vulnerabilities, we

catalogued the 31,380 vulnerabilities in the National Vulnerability Database [26] that are related

13

CWE Description Percent

CWE-20 Improper Input Validation 6.7%

CWE-22 Path Traversal 6.8%

CWE-79 Cross-site Scripting∗ 25.9%

CWE-89 SQL Injection 22.0%

CWE-94 Code Injection 6.8%

CWE-119 Buffer Overflow 6.9%

CWE-189 Numeric Errors 1.7%

CWE-200 Information Exposure 3.9%

CWE-264 Improper Access Controls 7.6%

CWE-287 Improper Authentication 2.4%

CWE-352 Cross-Site Request Forgery* 2.2%

CWE-399 Resource Management Errors 3.5%

Other (Server-Side) 3.6%

Figure 2.3: Most common vulnerabilities related to web technology as reported by the

National Vulnerability Database [26]. Each is labeled using the standard Common Weakness

Enumeration (CWE). 71.9% involve server-side attacks, resulting in remote code execution

or data leakage.

∗Client-side attacks that coerce browsers into performing unauthorized actions.

14

Attack Outcome Percentage

Leakage of Information 27.6%

Downtime 20.6%

Defacement 16.3%

Planting of Malware 8%

Stolen Property 6.2%

Planting False Information 4.8%

Figure 2.4: Data reported by the Web Hacking Incident Database [38]. Most attacks on

web applications lead to loss of information and service disruption to the users.

to web technologies or the systems that power them, such as SQL databases. The results are pre-

sented in Figure 2.3. Each vulnerability comes categorized with a Common Weakness Enumeration

(CWE) [10] label. The methodology likely under-reports the frequency of server-side problems; for

most web applications, the server-side code is not public, limiting the ability for outside groups to

diagnose precisely why compromises occur.

In this data set, 28.1% are client-side attacks that coerce a web browser client into performing

unauthorized actions, such as cross-site scripting and cross-site request forgery. The rest involve dif-

ferent types of server-side vulnerabilities. The most prevalent server-side vulnerabilities all involve

some form of remote code execution (e.g. “SQL injection”, “code injection”, “buffer overflow”) or

data leakage (e.g. “improper access controls”, “path traversal”).

Characterizing Hacking Incidents

Hacking-related incidents occur frequently. Due to the public nature of cloud applications, anyone

with a computer can launch a remote attack. The Web Hacking Incident Database (WHID) [38]

maintains a database of publicly reported hacking incidents. Figure 2.4 shows the outcomes of the

1377 publicly reported hacking incidents between 1999 and 2014. Of these, information leakage is

the most common outcome of attack, reported in over a quarter of cases. We note that a non-trivial

number of attacks also lead to disruption of service or information integrity. Many attacks directly

15

lead to downtime or defacement. Other attacks use the hacked website as a vector of malware

distribution or stealing property such as cash.

2.2.2 Defenses

We categorize defenses to external threats into two main categories. Analysis systems examine

source code, network activity, computation, storage, and interprocess data flows, alerting the de-

veloper to vulnerabilities and anomalous behavior. Some systems augment monitoring with policy

enforcement, allowing the developer to globally specify policies of allowed behavior. For example,

information flow control systems track the flow of information across a distributed system, limiting

flows based on policies allowed by the developer.

Complementary to analysis, isolation techniques are used to split a complex monolithic applica-

tion into independent units based on the principle of least-privilege [206]. By limiting the code and

data available to any particular unit, we can reduce the attack surface and impact of a successful

attack.

In Figure 2.5, we summarize server-side web security solutions. All solutions focus on either

preventing or reducing the impact of external intrusions. By imposing code structure constraints,

applications can achieve resilience to different categories of vulnerabilities.

Monitoring, Analysis, and Policy Enforcement

Black Box Network Testing: A variety of black box techniques have been proposed to detect

attack signatures [188, 204, 233] and block known attack vectors [39, 171, 211]. These defenses are

most effective against attacks where there is a clearly identifiable signature of network traffic when

the attack is being launched. Other systems can replay attacks [142, 58] to test an application’s

resilience. Black box techniques are desirable because they require no code changes from the

developer. However, recent studies show that black box testing often misses many important

vulnerabilities in the wild [53]. The study highlights the limitations in detecting complex attacks

that leverage multiple vulnerabilities in a specific way or in detecting unknown vulnerabilities.

Source Code Analysis: While black box testing treats the code as an opaque block, source

code analysis tools enable developers to analyze their source code for vulnerabilities. Some tools

16

Technique C
ro

ss
-s

it
e

S
cr

ip
ti

n
g

S
Q

L
In

je
ct

io
n

Im
p

ro
p

e
r

A
cc

e
ss

C
o
n
tr

o
ls

B
u
ff

e
r

O
v
e
rfl

o
w

C
o
d
e

In
je

ct
io

n

P
a
th

T
ra

v
e
rs

a
l

Im
p

ro
p

e
r

In
p
u
t

V
a
li

d
a
ti

o
n

In
fo

rm
a
ti

o
n

E
x
p

o
su

re

R
e
so

u
rc

e
M

a
n
a
g
e
m

e
n
t

Im
p
ro

p
e
r

A
u
th

e
n
ti

ca
ti

o
n

Process Isolation 7 3 31 31 31 31 31 7 31 7

[145, 60, 151, 187]

Information Flow Control 7 72 3 72 72 7 72 3 7 72

[117, 186, 93, 146, 247]

Monitoring / Analysis / Firewall 7 33 7 33 33 7 33 7 33 7

[233, 171, 211, 142, 58]

Figure 2.5: Categories of vulnerabilities mitigated by web application security techniques.

1This thesis expands on these works to make per-user isolation practical at scale. 2Invalid

flows can be blocked, but it can be difficult to specify correct policies. 3Intrusion detection

systems use heuristics to deny requests, but can miss unknown exploits.

17

specifically search for known vulnerabilities [222, 248, 207, 59], such as parameter tampering [59]. In

other systems, developers specify expected behavior and use symbolic execution to detect possible

code paths that can lead to violations [110, 69]. Verification tools can also be used to prove that

a particular implementation satisfies the specification [242, 128]. Code analysis and proofs provide

assurances, but writing specifications and proofs can impose a heavy burden on developers and are

not practical for rapid application development.

Global Data Security Policies: While the previous two sections focused on finding code vul-

nerabilities, other techniques monitor data accesses in a live system. Most commercial systems

allow sysadmins to specify access control policies, typically at the granularity of a database table

or collection. Some systems allow access control on each item or row of data in a table for more

precise control [187, 16]. The typical development pattern for access control involves providing

global access and iteratively restricting access to define a proper security policy. Access control can

be enforced at the database interface. Other frameworks bind policies to the data [209, 65] which

follows the data as it propagates through the system. Data policies are explicitly defined by the

developer, or inferred through monitoring real access patterns at runtime [60]. Data security poli-

cies can prevent initial unauthorized access to a data source, but cannot restrict data propagation

once access is granted.

Information Flow Control: While access control policies specify who has access to data, in-

formation flow control (IFC) allows the developer to track entire data flows from beginning to

end [247, 146]. For example, IFC could allow developers to specify that billing information should

never end up transmitted to a customer. Thus, IFC is a powerful method to limit data flows and

prevent data exfiltration, even if the application was compromised. Hails [117] uses IFC to track

privacy violations when untrusted third-party applications run on private data provided by a web

service. PHP Aspis [186] uses IFC to guard against injection attacks and DBTaint [93] tracks IFC

across different applications. While IFC systems can block invalid data flows, it does not pre-

vent service disruption if the server is compromised. Furthermore, specifying correct policies for a

complex cloud application can be difficult across many internal services.

18

Datacenter

. . . .

Web Service
Clients

User Router + Authentication

User App Logic

Memcache

Sockets

Access Control

User
A

User
B

User
C

User
D

User
E

User App Logic User App Logic

A B C D E F G H I

Sockets Sockets

Server 3Server 2Server 1

Global Shared Database

Figure 2.6: Layout of a service decomposed into per-user sandboxes, such as CLAMP [187].

19

Isolation

An alternative approach to limiting the effects of an attack is to run different components of a

service in its own sandbox. By separating the code and data into different sandboxes, compromise

of a single sandbox does not affect other sandboxes. Each sandbox can be hardened to minimize

their respective attack surfaces.

Service Isolation: Service-oriented architecture provides a natural way to isolate components

of a cloud application. OKWS [145] and Passe [60] introduce process isolation within an individ-

ual web application. These frameworks provide protection boundaries between naturally isolated

components of the application (e.g. search and storage). Passe also introduces a mechanism for

automatically generating a security policy by monitoring accesses during normal operation.

User Isolation: Per-user isolation takes this a step further and isolates users on the server, such

that compromising the cloud service as a single user does not affect other users. πBox [151] intro-

duces a per-user sandbox that spans a mobile app and web server; it interposes on all communication

between users, with the goal of providing an end-to-end privacy-preserving mobile-cloud platform.

CLAMP [187] introduced per-user sandboxes for server-side code execution, spawning a new virtual

machine for each user session. To port existing web applications written in a shared-everything

model, developers in CLAMP specify an access control policy to limit each user’s view of the

database. Specifying a correct data policy can become intractable if policies must be cross-table or

cross-database.

2.2.3 Summary

Many previous efforts to defend from external threats involve a top-down approach. In these

systems, developers need to be able to properly specify allowed behavior globally. However, as

applications become more complex, often with interoperating internal cloud services, it becomes

intractable to do this correctly. In Chapter 3, we investigate the costs and effectiveness of a bottom-

up approach, where all users are completely isolated to start and developers use an explicit interface

to share data between users.

20

2.3 Insider Threats

2.3.1 Threat Model

When considering insider threats, we treat the cloud service as part of the adversary. We assume

all servers are collecting information about all client network requests, such as the source, operation

type, parameters, timing, and size of requests. Servers can exhibit arbitrarily malicious behavior,

such as send faulty responses to clients that deviate from the expected protocol.

When considering insider threats, we must consider all ways in which user information is leaked

to the adversary. For example, an adversary can monitor how a client uses the cloud service, in

addition to what a client sends. Metadata, such as with whom clients communicate or the schedule

of network requests, is often valuable to an adversary (e.g. a government tracking dissident groups).

As a consequence, merely encrypting content, such as images and message data, is insufficient for

protecting user privacy. Recent studies have shown that an attacker could learn 80% of a user’s

search keywords just by monitoring access patterns, even when messages were encrypted [136].

When a persistent adversary can monitor the system over time, protecting against insider

threats prove even more challenging. Many systems that are designed for user privacy are weak

against persistent adversaries [41, 43, 210, 232, 84, 85, 86, 149, 245]. For example, in an intersec-

tion attack [91, 141, 163], the adversary tracks when users send requests in order to measure the

statistical likelihood that two users are communicating together.

In some related work, there is a separate notion of a network adversary that can either passively

monitor or actively manipulate packets on the network. Because we consider cloud applications

where users send all data through a cloud service, we can treat a network adversary as a type of

insider threat.

In practice, we do not need to assume the developer is intentionally malicious. Insider threats

can manifest in a cloud application in many other ways. For example, a developer’s credentials may

be stolen in a phishing attack. A government could compel the cloud service to install surveillance

tools. A malicious attacker could have successfully installed malware on cloud servers. In these

cases, the attacker has as much power as the developer to mount attacks on users.

21

2.3.2 Security Goals:

The prior work in this space includes a wide range of security goals for user privacy from insider

threats. We summarize common security goals in this section.

k-anonymity: Systems based on k-anonymity focus on privacy in the context of a single round of

communication. Suppose a subset k out of n total users each send a message in a round. These

systems ensure that the adversary cannot learn from which of k users any particular message was

sent. These systems do not provide guarantees when the system is observed across many rounds of

communication.

Differential Privacy: Differential privacy [101, 102, 167] provides a theoretical framework for

quantifying information leakage. By introducing randomness into responses, the system can limit

information disclosure. For example, differential privacy has been applied to databases [168], al-

lowing approximately accurate statistical queries over sensitive data, while using randomness to

protect individual records. Differential privacy has also been applied to aggregate analytics [107],

where users introduce noise into their sensitive data before uploading it to a database. In private

communication systems where an adversary is trying to determine which users are communicating,

differential privacy can also be used to quantify information leakage as a function of the number

of fake requests [232]. In each of these systems, the developer must tune the noise, at the cost of

accuracy and performance, in order to reduce information leakage to an acceptable level.

Indistinguishability: A stronger form of privacy used in Chapter 4 of this thesis is indistinguisha-

bility, where an adversary cannot distinguish between any two access patterns. For example if a

communication system consists of requests to a cloud service, the adversary should not be able to

distinguish between a particular sequence of requests, a random set of requests, or an idle user.

Anytrust: A common assumption made in private messaging systems and in Chapter 4 of this

thesis is the anytrust model. In these systems, we assume l independent servers and at least

one of l servers to be honest. This honest server adheres to the specified protocol and does not

collude with other servers to de-anonymize users. For example anytrust may be achieved if each

server was managed by a different company in different countries, provided those companies do

not collude. The anytrust assumption can be combined with k-anonymity, differential privacy, and

22

indistinguishability.

2.3.3 Defenses

When defending from insider threats, we consider adversaries with control over the cloud. These

adversaries can install their own operating system, monitor and response to network traffic, and

change any state on the system (e.g. on disk). For these adversaries, we need to consider both

the contents of user data, as well as metadata describing how a user interacts with the system. In

this section, we categorize defenses between data encryption and metadata protection. With data

encryption, we focus on the privacy of individual data items. Users can encrypt messages with a

key, preventing anyone without the key from reading the message. With metadata protection, we

focus on hiding metadata such as the source, destination, or pattern of messages. There exist a

large range of security goals, such as indistinguishability and differential privacy. In this section,

we discuss the performance and security tradeoffs between various systems.

Storing Encrypted Data:

Encryption allows users to encode a plaintext message into ciphertext by using a secret key. Only

users with the secret key can decrypt the ciphertext to read the original message. Some applications

today offer end-to-end encryption, where clients encrypt all data before sending it to the cloud.

A user can then give other users access by sharing the secret key. When all data on the cloud is

encrypted with a sufficiently random key and a strong algorithm, users can gain confidence that

data is likely to be safe, even if a service gets compromised.

A number of companies now provide end-to-end encryption for a variety of applications, such

as messaging [33] and password storage [35]. However in general, encrypting data can compromise

service functionality. For example, an email application needs to train on user data to detect spam,

which becomes impossible if all data is encrypted. In research, Mylar [194] proposed a general way

to transparently incorporate end-to-end encryption for certain applications, supporting a limited

form of search over encrypted data.

23

Computing on Encrypted Data:

Property-preserving Encrypted Databases: In property-preserving encrypted databases, first

proposed by CryptDB [193], data is encrypted with specialized encryption schemes that reveal

certain properties about the underlying data. For example, with order-preserving encryption, ci-

phertexts can be sorted in the same order as the corresponding plaintext. By definition, property-

preserving encryption reveals information about the underlying data. Recent studies have shown

that the underlying data can be inferred in more than 80% of records when applying order-preserving

encryption to medical databases [175].

Homomorphic Encryption: Homomorphic encryption describes a set of techniques for per-

forming computations on encrypted data. For example, Pallier [185] is a partially homomorphic

cryptosystem, where a cloud service could compute the sum of two values by multiplying their

respective ciphertexts. If Enc(x) is an encryption function and x is a plaintext message, then

Enc(x1) ·Enc(x2) = Enc(x1 +x2). Fully homomorphic encryption [114] schemes support arbitrary

computations on encrypted data. These systems hold the promise of being able to support arbi-

trary cloud applications where the cloud service is completely blind to user data. Unfortunately,

current implementations are impractically expensive. Improving the performance of homomorphic

encryption is an active area of research.

Trusted Computing: Trusted computing provides an alternative model for building secure appli-

cations. The Trusted Platform Module (TPM) is a dedicated cryptoprocessor that embeds a secret

key, generated randomly at manufacture time and stored in tamper-resistant hardware. The TPM

can perform cryptographic functions, like encryption and signatures, with this secret key. Because

the secret key is signed by the hardware manufacturer, the processor can also prove to remote users

that it has a valid key by signing a random number.

Intel SGX [22] introduced enclaves, protected areas of execution in memory. Modern Intel

processors can sign a hash of the code and data loaded in an enclave, forming a remote attestation.

Remote attestations prove to a remote user that the processor is in fact running what the user

expects, and not malicious surveillance software. Intel SGX also provides regions of encrypted

memory. Assuming that the user trusts the hardware manufacturer, these hardware extensions

24

allow a user to run arbitrary applications efficiently on remote hardware, such as the cloud, with

hardware-based assurances that the software on the system is configured as expected and data

outside of the processor is encrypted. An application loaded into an SGX enclave can then perform

key exchange to set up a secure channel with a remote client, allowing the client to send encrypted

data for processing.

Recent work has explored ways to protect the integrity and confidentiality of such applications,

even when the underlying operating system, virtual machine monitor, and firmware are not trusted.

Haven uses Intel SGX enclaves to protect unmodified applications from a malicious operating

system. [54]. Ryoan leverages both Intel SGX and compiler techniques to restrict unauthorized

data flows when running untrusted applications in enclaves [134].

Limitations: While the ability to compute over encrypted data is a powerful primitive, it is not

sufficient to provide strong user privacy in cloud applications. Attackers can leverage side channels

by observing timing of instructions, power consumption, cache behavior, and memory/network/disk

usage to gain more information. For example if the same location in memory is accessed by the

application only when Alice and Bob make requests, an observer can infer that Alice and Bob are

communicating. Other attacks have shown that secret encryption keys can be leaked by observing

cache timing [213] and power consumption [161]. Furthermore, all trusted computing schemes rely

on strong assumptions on the integrity of hardware secrets.

Even if individual messages are encrypted, an insider can still observe how users interact with

the system. Examples of such metadata observations:

• Time that data is sent or received

• Message sizes

• Patterns of communication (e.g. which users communicate together)

• Time that users are online

In order to remove metadata from an insider threat, a number of systems have been proposed

with varying security goals. In Figure 2.7, we summarize recent systems, their security goals,

techniques used, and intended application.

25

System Security Threat Technique Application

Goal Model

Talek indisting. ≥ 1 IT-PIR group messaging

Pynchon [210] k-anon. ≥ 1 mixnet/IT-PIR email

Riffle [149] k-anon. ≥ 1 mixnet/IT-PIR file-sharing

Riposte [84] k-anon. ≥ 1 IT-PIR broadcast

Dissent [85] k-anon. ≥ 1 DC-nets broadcast

Vuvuzela [232] diff. privacy ≥ 1 mixnet 1–1 messaging

DP5 [63] indisting. ≥ 1 IT-PIR chat presence

Popcorn [126] indisting. ≥ 1 C-PIR/IT-PIR video stream

Pung [48] indisting. 0 C-PIR key-value store

ORAM [217, 218, 219] indisting. 0 ORAM storage

Figure 2.7: Comparison of privacy-related techniques. Indistinguishability offers the

strongest level of privacy. Prior work with indistinguishability are either expensive or tailored

to a single application. Under repeated use, k-anonymity systems leak which of k clients

originated a particular message, opening the systems to intersection attacks [91, 141, 163].

Differential privacy provides a formal framework to quantify information leakage and privacy

bounds, but does not inherently guarantee that no information is leaked. The threat model

column denotes the number of servers that must be honest for security properties to hold.

26

Private Information Retrieval:

Private information retrieval (PIR) allows a client to retrieve a block from an untrusted server,

or set of servers, without revealing to any server the blocks of interest to the client. In the naive

approach, a client downloads the entire database to read a single block. An adversary would be

unable to determine in which block a client is interested. The challenge of PIR is to design more

efficient techniques.

There exist two major categories of PIR techniques, information-theoretic PIR (IT-PIR) [78,

118, 95] and computational PIR (C-PIR) [148]. Of the best known techniques and implementations,

IT-PIR has been shown to be orders of magnitude less expensive in computation and network usage

than C-PIR. This trade-off comes at the cost of supporting a weaker threat model. With C-PIR,

privacy is preserved even with one untrusted server, whereas IT-PIR requires one honest server in

an anytrust threat model.

Information-theoretic PIR: In order to gain an intuition for the performance and cost of IT-

PIR, we illustrate the protocol with an example (Figure 2.8). Let l represent the number of servers

in the system, each storing a full copy of the database, partitioned into equal sized blocks. While

IT-PIR generalizes to arbitrary numbers of servers and blocks, the example in Figure 2.8 contains

l = 3 servers and n = 3 blocks ({B1, B2, B3}).

1. Suppose a client wants to read the second block, β = 2. It encodes that with the bit vector,

q′ = [0, 1, 0], which consists of zeros and a one in position β.

2. The client generates l − 1 random n-bit request vectors, q1 and q2, for each of the l servers

except one.

3. The request vector for the remaining server is computed by taking the XOR of the vectors

from (1) and (2), ql = q′ ⊕ q1 ⊕ . . .⊕ ql−1.

4. The client then sends qi, to server i for 1 ≤ i ≤ l. Because request vectors are generated

randomly, this reveals no information to any collection of < l colluding servers.

5. Suppose the server receives qi = [b1, . . . , bn] and Bj represents the jth block of the database.

Each server computes Ri, the XOR of all Bj for which bj == 1 and returns Ri to the client.

27

B3B2B1B3B2B1B3B2B1

Client

Server 1

XOR server responses
B2 = (B1 ⊕B2)⊕(B1⊕B3)⊕(B3)

q1

B1⊕ B2 B1⊕B3 B3

Server 2 Server 3

Read(B2) q’ = [0,1,0]
Generate random q1 = [1,1,0]
 q2 = [1,0,1]
Compute q3 = q’⊕q1⊕q2 = [0,0,1]

1

2

3

4

5

6

q2 q3

Servers

Client

Figure 2.8: Information-theoretic PIR example. Each client sends a random request vector

to each server, except for one, which receives the XOR of the other random requests plus the

true request. Each server responds with data equal in size to a single data block. As long as

some server does not collude, the remaining servers cannot determine q′, which of n blocks

the client is retrieving.

28

6. The client retrieves the desired block, Bβ, by taking the XOR of all Ri replies, Bβ = R1 ⊕

. . .⊕Rl.

Computational PIR: C-PIR is conceptually similar to IT-PIR, except partially homomorphic

encryption is used to hide queries in place of secret sharing across non-colluding servers. We

illustrate C-PIR with an example with one untrusted server and n = 3 blocks ({B1, B2, B3}).

Let Enc(pk, x) and Dec(sk, c) represent the encryption and decryption functions of an additive

homomorphic cryptosystem, such as Pallier [185], where pk is the public key, sk is the secret key,

x is the plaintext message, and c is the resulting ciphertext. Recall that in additive homomorphic

encryption, Dec(sk,Enc(pk, x1) ·Enc(pk, x2)) = x1 +x2. Enc is also a randomized function, which

means repeated calls to encrypt the same message yields different ciphertexts. Specifically for

Pallier, let the public key, pk = (g,m), consist of a base g and modulus m and r ∈ {0, . . . , (m− 1)}

be a random number. Then,

Enc(pk, x1) · Enc(pk,m2) = (gx1rm1)(gx2rm2) mod m2

= gx1+x2(r1r2)
m mod m2

= Enc(pk, x1 + x2)

1. Suppose a client wanted to read the second block, β = 2, encoded by the bit vector, q′ =

[0, 1, 0], which consists zeros and a one in position β.

2. The client generates a request by encrypting every bit with the public key,

q = [Enc(pk, 0), Enc(pk, 1), Enc(pk, 0)] = [c1, c2, c3].

3. The client then sends the request, q, to the server. Because each bit is encrypted, this reveals

no information to the server.

4. The server receives q = [c1, . . . , cn]. Let Bi represent the ith block of the database. The

server computes R =
∏n
i=1 c

Bi
i and returns R to the client.

5. The client restores the desired block, Bβ, by decrypting the result R. Bβ = Dec(sk,R).

29

Recall for Pallier,

Bβ = Dec(sk,R)

= Dec(sk,
n∏
i=1

cBi
i)

=
n∑
i=1

Dec(sk, ci) ·Bi

= Dec(sk, c1) ·B1 +Dec(sk, c2) ·B2 +Dec(sk, c3) ·B3

= 0 ·B1 + 1 ·B2 + 0 ·B3 = B2

Benefits and Limitations of PIR: PIR has desirable network properties: a client sends one

request vector to and receives one block from each server. These requests and responses appear

random to the network and the servers. PIR is computationally expensive, with read cost that

scales with the size and number of blocks in the system. C-PIR uses more expensive cryptographic

operations compared to XOR in IT-PIR. The size of a client request scales with total number

of blocks and the client work scales with the number of servers. IT-PIR also requires consistent

snapshots across servers, with equal sized blocks in the data structure.

On its own, PIR is only a protocol for private reads. How writes are performed can also affect

user privacy. For example, two users writing to the same location leaks information, even if all

reads are serviced using PIR.

PIR-based systems: DP5 [63] is a chat presence system to allow users to discover their friends’

online presence. Users periodically send their online status (e.g. online/offline/away) to a set of

servers. Users then poll the servers using PIR to retrieve their friends’ statuses, without revealing

which users they are following. Popcorn [126] uses both C-PIR and IT-PIR to construct a private

read-only video streaming system over a static video database. Both DP5 and Popcorn leverage

assumptions about application workloads to make PIR practical. Pung [48] is a PIR-based key-

value store with user request indistinguishability. Pung assumes C-PIR, and thus works with

fully untrusted infrastructure. However, their overhead is high. For example, key lookup requires

O(log(n)) round trip PIR requests.

30

Private Information Storage:

A related concept to PIR is private information storage (PIS) [182]. PIS allows a client to write to

a row to a database of n rows without revealing which row was updated. Consider an example with

2 non-colluding servers storing a L-bit replica of the database, and a client that wants to write a

“1” into bit β of the database.

1. The client composes eβ, a L-bit string of zeros, except with a 1 in the β-th bit.

2. The client then generates random L-bit string, w1, and sends w1 to the first server.

3. The client computes w2 = eβ ⊕ w1, and sends w2 to the second server.

Each server collects write requests from all clients and XORs them together. After processing

n writes, the database at the first and second servers will be D1 and D2 respectively. At the end

of the round, servers combine their respective databases to retrieve the plaintext database, D.

D1 = w1,1 ⊕ . . .⊕ w1,n

D2 = w2,1 ⊕ . . .⊕ w2,n

= eβ1 ⊕ w1,1 ⊕ . . .⊕ eβn ⊕ w1,n

= (eβ1 ⊕ . . .⊕ eβn)⊕D1

D = D1 ⊕D2

D = (eβ1 ⊕ . . .⊕ eβn)

PIS schemes provide k-anonymity across a single round of communication. As long as one server

does not collude, the adversary cannot determine which bit was written by which user. However,

the above scheme incurs O(n) communication complexity and is vulnerable to write conflicts be-

tween users. Ostrovsky and Shoup [182] introduced a PIS scheme that incurred poly-logarithmic

communication complexity. Riposte [84] further improves on this work, applying distributed point

functions for O(
√
n) writes and addressing write conflicts with a coding technique. Riposte is a

scalable broadcast messaging system and does not specify how users should read from the system.

Riposte is vulnerable to intersection attacks when the system is observed for more than a single

round of communication.

31

Mixnets:

Chaum mixnets [71, 72, 125, 137] and verifiable cryptographic shuffles [64, 113, 176] are a set to

techniques to obfuscate the source of a message. All mixnet systems rely on the anytrust assumption

to offer k-anonymity in a round of communication.

In order to explain how mixnets work, we illustrate an example with l servers, where one is

assumed to be honest and non-colluding. We arbitrarily assign an order to the servers, each with

public keys pk1 . . . pkl respectively. Clients prepare messages by iteratively encrypting the message

with server public keys, in a process known as onion encryption. The plaintext, x is first encrypted

with the last server’s key. Then, the i-th layer is computed by encrypting the (i + 1)th layer with

the i-th server’s public key. As a consequence, messages must be passed in sequence from s1 to sl

in order to decrypt the subsequent layers.

Cl = Enc(pkl, x)

Ci = Enc(pki, Ci+1)

Mixnet systems operate at the granularity of rounds of communication. In a round, k clients

submit their messages to the first server. Each server reorders the messages in a random permutation

before decrypting a layer off the onion encryption and passing the messages to the next server. As

long as one of the servers remains honest, plaintext messages should arrive randomly ordered at

the final server. Thus, mixnets provide k-anonymity, where the adversary cannot tell which of k

users is the source of any particular message in a round. Mixnets do not offer security guarantees

between rounds and require a set honest users in every round. If only one honest user participates

in a round and all other messages come from the adversary, the adversary can determine the source.

Mixnet-based systems: Mixnets are applied to provide anonymity in a variety of applications,

such as email [72, 90, 125] ISDN networks [137], voting [139, 176], data collection [64], MapReduce

computations [98], social applications [71], and web proxies [111]. When a mixnet is used to access

an encrypted database, unlinkability can be difficult to guarantee when the database is also un-

trusted. Network-level onion routing [197, 97, 138] systems can also be used to access an encrypted

database with similar limitations. Using differential privacy analysis, Vuvuzela [232] formalizes the

amount of noise that honest shufflers would need to inject in order to bound information leakage

32

at the database.

Combining Mixnets with PIR: Pynchon Gate [210] is an email system where messages are sent

to email servers through mixnets. Emails are dumped daily to distributor servers, where clients use

IT-PIR to privately retrieve messages. While PIR hides which messages clients are interested in,

the email server stores the communication patterns between email addresses. Riffle [149] follows

a similar design, using mixnets to send messages and IT-PIR to retrieve messages to provide k-

anonymity in a round. Riffle and other systems based on k-anonymity are susceptible to intersection

attacks [91, 141, 163], where communication patterns can be deanonymized over time with statistical

analysis if users are not always online.

DC-nets:

DC-nets are a technique for broadcasting anonymous messages based on the dining cryptographer’s

problem. In order to explain DC-nets, we illustrate an example where Alice would like to broadcast a

single bit, b, to Bob and Charlie. Bob, Charlie, and any adversary listening on their communications

should not know who sent the bit.

First every pair of participants establishes a 1-bit random shared secret by flipping a coin. Alice

and Bob share sab, Bob and Charlie share sbc, and Alice and Charlie share sac. In the second stage,

every participant broadcasts the XOR of all the shared secrets they possess and the sender also

includes the bit b. Thus, Alice broadcasts ta = sab ⊕ sac ⊕ b, Bob broadcasts tb = sab ⊕ sbc and

Charlie broadcasts tc = sac ⊕ sbc. Finally, all participants take the XOR of all broadcasted bits to

read b from the system.

ta ⊕ tb ⊕ tc = sab ⊕ sac ⊕ b⊕ sab ⊕ sbc ⊕ sac ⊕ sbc

= b

DC-nets provide k-anonymity. At the end of a communication round, nobody aside from the

sender knows which of the users sent the message. In a system with n users, DC-nets require random

bits be shared between every pair of users for every message sent, yielding O(n2) communication

complexity. In the protocol described, DC-nets are also weak to collisions; only one user can send

33

a bit at a time.

DC-net systems: Herbivore [216] applies DC-nets to building file-sharing networks over small

cliques. Dissent [85, 86, 245] extends traditional DC-nets to provide transmission schedules and

accountability mechanisms for detecting misbehaving participants. DC-nets enable effective broad-

cast messaging, but they are not a good fit for cloud application workloads because of the high

network costs.

Oblivious RAM (ORAM):

ORAM [119, 121, 181] is a set of protocols that allow a single trusted client to access an untrusted

storage without revealing its access pattern, even to a strong adversary who controls the storage.

ORAM offers a strong security goal based on indistinguishability of access patterns. Most ORAM

schemes arrange blocks in a hierarchical scheme, where each node in the tree stores a bucket of

blocks. In order to read a block, the client must read Ω(logN) nodes on a path from the root to a

leaf. Once a block is read, it must be re-encrypted with new randomness and moved to a new random

location in the database. While recent work improve the cost of ORAM [79, 115, 147, 201, 219, 237],

and offload some work onto dedicated servers [159, 217], the cryptographic security of the system

depends on large reads and constant data shuffling. ORAM has a theoretical lower bound of

Ω(logN) overhead [121] with respect to the total number of blocks in the system.

While ORAM protocols are inefficient when conducted over a wide-area network, it can be paired

with a trusted processor in the cloud. The trusted processor enables the application to conduct the

large ORAM reads and data reshuffling locally and securely on the cloud, only sending the final

result to remote clients. ORAM and trusted processors present an opportunity to build arbitrary

privacy-preserving applications subject to limits on side channels. Recent systems have applied

trusted processors and ORAM to build virtual disks [159], filesystems [243], cloud storage [92, 218],

and data analytics [249, 212].

2.4 Summary

This chapter summarizes research on securing user privacy in cloud applications. We identify

both external and insider threats and describe existing attempts to hide data and metadata from

34

these adversaries. Existing systems either suffer from poor performance or offer security goals that

are weak to a persistent active adversary, suggesting that users can benefit from improving the

performance of privacy techniques with strong security goals.

35

Chapter 3

SECURING CLOUD APPLICATIONS FROM EXTERNAL
INTRUSION

I first focus on securing arbitrary cloud applications from external attacks. Web sites are

routinely broken into, resulting in frequent service disruptions and massive leakage of private infor-

mation. With the current architecture of most web services, wide-scale compromise is all too easy

because the server-side application logic is part of the trusted computing base (TCB). Existing web

applications are structured as monolithic controllers with access to all user data, interpreting user

permissions in order to dynamically assemble pages for a user. Thus, compromises allow attackers

nearly unimpeded access to all of the information available to the service. Data compromises of

this nature have remained the largest class of web application vulnerabilities for the full decade of

OWASP (Open Web Application Security Project) vulnerability reports [29].

One approach to securing web applications is to de-privilege the code into sandboxed processes

for individual services (e.g. search and newsfeed) [145, 60] or for individual users [187, 151]. Sand-

boxing users of a modern web application with reasonable performance is challenging. Generating

a single page can span many layers of web servers, caches, storage systems, and coordinators, across

multiple machines and data centers. A user container must isolate users at every layer of the stack,

while supporting cross-user data sharing and application flexibility. Even if the code execution

environment is isolated, existing frameworks assume a global data model. Instead of cross-layer

isolation, applications are written assuming full access to a single shared database across all users,

requiring that the developer iteratively restrict global data policies [187, 65, 209], e.g. by potentially

using information flow control [186, 117].

In this chapter, we propose an alternative data security model in a shared-nothing web ar-

chitecture. The web platform already treats the browser as a per-user isolated sandbox running

untrusted code. We extend this into the server and database, where application code is run in a

strongly isolated sandbox containing its own logical data partition with the privileges of the logged-

36

Datacenter

. . . .

Web Service
Clients

User Router + Authentication

User App Logic
+

Capabilities

Memcache

Radiatus API

GuardGuard

User
A

User
B

User
C

User
D

User
E

User App Logic
+

Capabilities

User App Logic
+

Capabilities

A B C D E F G H I

Radiatus API Radiatus API

Server 3Server 2Server 1

Database
A B C D E F G H I

Figure 3.1: Layout of a Radiatus web service. In Radiatus, we extend isolation into

the storage layer in an end-to-end shared-nothing architecture. Both application logic and

storage for each user runs in sandboxes with de-escalated privileges, which communicate

through a restricted message passing interface.

37

in user. By default, no state is shared between users. Developers write their applications in terms

of mutually distrusting users, who can only communicate through messages. Radiatus’s distributed

runtime uses a capability-based security system to protect access to private data, while being both

storage space-efficient and horizontally scalable. Capability-based security can be a more tractable

approach for the data sharing patterns of web applications across internal services compared to

group-based data policies. Barring compromise of the user authentication mechanism, intrusions

are contained to the subset of data already available to the malicious user.

Our goal with Radiatus is to show that we can implement a shared-nothing web architecture in

a way that is practical today with scale, cost, and performance within a factor of existing shared-

everything web frameworks. The changes to the server are completely transparent to the user, who

continues to access the site through an unmodified web browser. Similarly, developer should be

able to continue using existing programming languages, distributed databases, distributed caches,

content delivery networks, and infrastructure-as-a-service cloud providers.

In order to evaluate the strengths, weaknesses, and performance implications of our architecture,

we have implemented a Node.js-based web framework in 8764 lines of code, called Radiatus, and

three applications: an academic social network, a file sharing tool, and a messaging service. The

difficulty of porting applications can vary depending on the application workload. For example, we

found it much easier to port applications that were written to be self-deployed or federated. We

describe our experiences porting Arc Forum, the engine behind Hacker News, to run on our system.

While our framework can contain the damage caused by many external intrusions and exploits,

we do not protect against insider threats with administrative access to site infrastructure. The

framework also does not attempt to protect clients. I discuss ways to address insider threats

in Chapter 4. Radiatus is complementary to other web security-related work, including encryp-

tion [193, 194, 114], language-based security [69, 164, 81], and bug-finding [222, 110, 248, 207, 59]

as discussed in Chapter 2.

The rest of the chapter elaborates on our contributions:

• I describe the Radiatus shared-nothing architecture for strongly isolating users in web appli-

cations and describe how existing web applications can be written in this model (§ 3.1).

• I have built the Radiatus platform and illustrate the Radiatus API with three applications

https://news.ycombinator.com/

38

written in the framework (§ 3.2).

• I show that sandboxing users prevents large-scale exploitation of the most severe web-related

vulnerabilities of 2014. We quantify the performance impact of Radiatus, including using it

on a 500-node deployment on Amazon AWS (§ 3.3).

3.1 Radiatus Design

While introducing per-user isolation seems like an intuitively simple idea, a number of challenges

make it uniquely difficult for web applications. Previous work [145, 60, 151] has proposed process

isolation in a single web server, but without addressing the practical demands of how to accomplish

per-user isolation in the context of a scalable web service using a variety of distributed storage

systems, caches, and content distribution networks.

For example, how do you support per-user database security? Different storage backends have

different user models, a problem sidestepped when application code is trusted. How do you manage

memory consumption and storage costs? We can give each user their own cache and storage silo,

but many objects in modern web applications are shared across users, sometimes across millions of

users. How do you efficiently support one-to-many communication patterns? Copying data between

users may not be feasible, and certainly adds overhead. How do you perform distributed container

management? User containers need to be placed to minimize communication cost and maximize

load balancing.

3.1.1 Threat Model

We focus on preventing attacks aimed at compromising a web server from an external vantage point.

We assume a malicious user can craft arbitrary network packets and send arbitrary requests to the

server. This includes URL interpretation attacks, server-side includes, code injection attacks, SQL

injection, malicious file executions, and buffer overflows.

We do not address server misconfiguration, insider attacks, social engineering, or weak cryp-

tographic primitives. Each of these are better addressed by other, complementary techniques

[193, 114, 117, 67, 73, 99].

39

3.1.2 Goals

In this section, we describe the user container model and the techniques that we use to make

per-user isolation practical.

• Strong Isolation: Radiatus should provide a general framework for isolating users, such that

server-side application vulnerabilities do not compromise data integrity or service availability

for other users.

• Minimal Overhead: We should support each additional user with minimal overhead in

performance and cost compared to existing web frameworks.

• Scalable: The scale and performance of applications written and deployed on Radiatus

should be comparable to that of existing web frameworks.

• Interoperability: The system should interoperate with existing cloud infrastructure, stor-

age systems, and tools.

3.1.3 Approach

Figure 3.1 shows the high-level model of a Radiatus application. We move developer’s code into a

protection domain that runs on behalf of the user. Attackers that exploit a vulnerability in that

code are limited to the containers they have credentials to access.

Sandbox Users: In Radiatus, we spawn a sandboxed process, which we call a user container, for

each active user. All code written by the developer runs inside this protection domain with the

privileges of the given user. As such, the user container can only read and modify data that is

owned by the user. In practice, we use Linux containers, which provides memory, filesystem, and

fault isolation between containers. We leverage existing techniques to apply resource limits to user

processes.

Limited Interfaces: Existing web services expose a single large HTTP interface for authentication,

user actions, and content fetches. Radiatus splits this interface into three with access restricted

by least privilege. Any user can authenticate with the user authenticator. Once equipped with an

authorization token, the user router forwards a user’s request to their own de-privileged containers;

40

requests are never directly processed by privileged code. We expose a cross-container message

interface between user containers to facilitate data sharing. User containers can only communicate

with mutual consent and access to this interface is blocked by default.

Passive Containers: To minimize memory overhead, containers are offline by default. Appli-

cations are written using an event-based programming model. A distributed container manager

determines placement, suspends, and resumes user containers as necessary to process incoming

requests.

Distributed Capabilities: Logically, each user has a storage partition, but physically the un-

derlying data is shared and stored on commodity databases. A storage guard, intermediates access

to the database and enforces access control for user data. We provide capabilities for scalable

fine-grained access control across disparate database systems, while deduplicating common data

between users.

Minimize trusted computing base: When processing requests from the browser or between

containers, we expect developers to employ defensive programming, treating communicating parties

as untrusted entities. In addition to these message checks, our trusted computing base consists of

a user authenticator, user router, storage guard, Radiatus runtime, and container mechanism (e.g.

OS processes/hypervisor). These components are written once and shared across all Radiatus web

applications.

3.1.4 Example Application

In this section, we walk through the typical lifecycle of Radiatus applications. A user container

acts as the server-side agent for each user, in a shared-nothing architecture. The container manages

the user’s private data and capabilities to access data that has been shared with that user. When

a user visits the site, the application code running in the container retrieves the data necessary

to assemble the desired page. Because user containers run identical application logic, our system

maintains a pool of instantiated but unconfigured containers, which are lazily bound when users

log in and subsequently destroyed when they log out. This technique reduces the latency of the

first request by a new user.

Figure 3.2 shows the workflow of sharing a file in a Radiatus application. Consider the scenario

41

User Router

comment(“….”)

publish(“file1”,
 cap)

Database

Radiatus API

Web
Server

Web
Server

Core
Logic

Data
Manager

Friend
Manager

Friend
Manager

Data
Manager

Core
Logic

Alice's
Browser

Alice's
Container

Bob's
Container

Bob's
Browser

Storage Backend

Cache
Message
Queue

GuardGuard

CDN Service

Guard

File

User Router

Radiatus API

Guard

Figure 3.2: Workflow of uploading and sharing files in the user container model. Each user

container acts in isolation and stores data in a private location. Alice and Bob communicate

using a typed message passing interface, through which they share files and messages.

42

where Alice shares a file with Bob. When Alice logs in, a user container is assigned to her. Alice

uploads the file to her user container and the application uses the storage interface to store the file

and metadata. The storage request returns a capability giving Alice (and only Alice) the ability to

retrieve the paper. Using the cross-container communication interface, Alice’s container can send

the capability in a message to Bob’s container. If Bob is currently offline, this message is stored in

a persistent queue until Bob logs in.

Capabilities are transferable and provide read-only access to an immutable snapshot of data.

If Alice makes changes to the file, she would need to send another capability to Bob for him to see

the revision. As we will see later, the fact that capabilities refer to immutable data is important

for system scalability and capability revocation.

3.1.5 Container Management and User Routing

A container manager keeps track of the web server on which each user container is running. The

container manager suspends containers when they become inactive. When a user container needs

to be initiated, the manager chooses an appropriate server. The container manager also attempts

to co-locate user containers that frequently communicate with each other.

Like a traditional load balancer, the Radiatus user router proxies connections to servers, op-

tionally terminating the TLS connection. The user router looks for a session cookie in the HTTP

request, uniquely identifying the user. If the router instance has never seen the user before, it will

query the container manager for the host server of the user container and caches this information.

Subsequent requests from this user are then forwarded to the proper user container. Even if an

application contains an exploitable vulnerability, network requests from the attacker will only be

routed to the attacker’s container. User routers are horizontally scaled as necessary to meet traffic

demands.

3.1.6 Cross-Container Communications

In order to support offline users, messages between user containers are persisted in a distributed

message queue, like Apache Kafka [5] and Amazon SQS [3], until the recipient’s user container

wakes up. Developers can also specify wake-on message policies for high priority messages (e.g.

43

1 type: {

2 title: ‘string ’,

3 author: ‘string ’,

4 timestamp: ‘number ’,

5 pdf: ‘buffer ’

6 },

7 rate: 100,

8 priority: ‘wake ’

Figure 3.3: Example of a declared message type. Developers must specify the type, rate

limit, and priority of all messages across the cross-container message interface.

ones that impact the user interface).

By default, containers are disconnected. Developers use addPeer/removePeer calls in the

API to specify permitted communication channels. Depending on the application, developers may

require bilateral consent before accepting messages (e.g. friend requests), or they may allow one-

way consent (e.g. chat messages). Limiting the connectedness of the container graph makes it more

difficult for the attacker to crawl the site by slowing virus propagation.

We introduce two optimizations to relieve stress on our message queue. First, messages between

two user containers on the same machine are directly routed to each other, bypassing the network.

Second, we batch messages to different user containers on the same node to reduce overhead.

As with incoming handling web requests, developers are expected to employ defensive program-

ming when writing message interfaces, treating communicating parties as untrusted entities. While

it is possible for vulnerabilities to exist in this code (cf. CWE-20), Radiatus employs a defense-in-

depth strategy to mitigate the risk of widespread exploitation. Attackers must first compromise a

user container to even have access to the cross-container interface. They must then find an exploit

that provides control over the neighbor container in a way that can be propagated.

Because containers run on server hardware, we can use three additional techniques to limit

attacks:

44

Typed interfaces: Developers must declare the messages and protocol for cross-container com-

munication [133]. The system checks all messages at runtime, denying non-conforming messages.

Figure 3.3 shows an example of a declared message type.

Resource limits: Each container is subject to strict limits on resources (e.g. CPU, memory,

network), to prevent attacks from launching denial-of-service attacks.

Anomaly detection and eviction: While we have not yet implemented this feature, we could use

machine learning to build a steady state model of expected container behavior, because application

communication patterns are hardcoded into the application logic. Anomalous resource usage or

communication patterns can trigger an operator alert for manual review. A dashboard gives the

operator controls to pause containers, partition the network and evict users as necessary to preserve

the health of the system. Many of the techniques, such as real-time notifications, high-speed

event monitoring, and policy scripts, are borrowed from decades of research in intrusion detection

systems [188].

3.1.7 Storage Access

The storage guard layer provides access control to protect back-end storage systems. In our shared-

nothing architecture, each user reads and writes into their own logical partition. A storage guard

instance is co-located with each database entry point, intercepts all requests, and tags each record

with the owner. Storage guard implementations must be adapted to communicate with each type of

database (e.g. SQL, NoSQL). For example in our MongoDB deployment, an instance of the storage

guard is run in front of each mongos query router. As the MongoDB cluster grows, there can be

many storage guards and query routers independently coordinating distributed operations over the

database, itself partitioned over many mongod database shards. We assume the developer will use

a heterogeneous set of diverse databases. While we could have used the built-in access control

provided by the database, synchronizing fine-grained access control policies across databases could

easily become a bottleneck.

45

Key-Value Storage

Name Description

get(key) Get a key

set(key, value) Set a key/value

remove(key) Remove a key

enumerate() Return all keys

clear() Clear partition

Cross-Container Communication

Name Description

send(userId, msg, msgType) Send a message

registerHandler(handler) Handles incoming messages

addPeer(userId) Add a peer

removePeer(userId) Remove a peer

Figure 3.4: Radiatus APIs for interacting with storage and other containers. The storage

system exposes a logically isolated user partition.

46

Distributed Capabilities

Radiatus uses distributed capabilities to encode access control in the existing communication pat-

terns of the application. For example, when Alice notifies Bob about a new photo, Alice can directly

pass the capability that gives Bob access to the photo. The capability is a cryptographic hash of the

content plus a random nonce H(data, nonce), which acts as a self-certifying name proving read-only

access to immutable data [112].

When a user stores a value, set(k, v), the user container adds a random nonce, n to the value

and computes the hash, H(v, n). The container then sends a request to the storage guard to persist

the ownership metadata, (user, k)→ H(v, n), the capability, as well as the content, H(v, n)→ v.

Capabilities are then self-certifying and transferable. Containers can send the capability,

H(v, n), to other containers, which can use it to retrieve the data from the database. The storage

guard will only return content if the capability has been registered by the owner. Radiatus also

uses Memcached to cache metadata, such as which keys a user owns, to accelerate data fetches.

This mechanism helps satisfy our original goals of scalable isolation with minimal overhead,

with these properties:

• Because the capability provides proof of access, any storage guard can independently verify

a capability, allowing the database and application to scale independently.

• Regardless of the number of users that persist the same content, or share the content with

their friends, the database only needs to store one copy of every unique data value, dedupli-

cated by content hash.

• Transferring capabilities is cheap, regardless of the content size or number of users with

access.

• If a capability is granted to a malicious user, they cannot destroy the owner’s data.

To support revocation, e.g., to remove an ill-advised tweet, the owner’s container can delete

both the capability and the data value from the store. This invalidates any outstanding capabilities

to the data and prevents future retrieval. To revoke a capability from a specific user, e.g., on a

change to a friend list, the owner’s container picks a new nonce m, computes the new capability

47

H(v,m), installs it, distributes the capability to the new set of friends, and then deletes the old

capability mapping. Of course, a corrupted friend’s account could have already retrieved and stored

a copy of the data or leaked it to the tabloids. Revocation only prevents later access.

We have implemented storage guards for MongoDB and Memcached, which have been sufficient

for the applications that we have built to date. Other NoSQL and key-value systems can be

supported similarly. We next describe how capabilities would interact with other types of storage

systems; these are not part of our current implementation.

Object-Relational Mapping (ORM) Object-relational mapping (ORM) [52] is a common pro-

gramming model that allows developers to persist objects in relational databases. For example, it

is natural to write an object-oriented program where an instance of an AddressBook class stores

an array of Record instances. ORM libraries provide synchronization primitives to convert these

objects into representations which are compatible with a relational database. ORM is the default

programming model for many popular web frameworks including Django, Ruby on Rails, and PHP.

In this case, the Radiatus storage guard functions identically as when in front of an SQL database,

described next. Objects are serialized and hashed before persisted to the database.

Relational Databases We want to give a user container access for any table (or object-relational)

data for which the user holds the matching capability. To do this, we configure every table in the

database with two extra columns to store the owner of the row and a hash of its contents (the

capability). On an INSERT operation, the storage guard automatically populates the owner and

capability columns. Subsequent requests to UPDATE a row are allowed if the user is the owner;

this also modifies the hash value, ensuring that each capability is valid only for a particular data

snapshot.

For queries, the user container sends the storage guard a list of its capabilities; these lists can

be cached for efficiency. The results of simple SELECT queries can be post-processed to ensure only

rows that the user has permission to access are returned, with the owner and hash value stripped

off. More complex queries involving JOIN need to be prepended with a SELECT operation to check

and strip off the capability.

Content Distribution Networks (CDN) Many modern CDNs provide a programming interface

for adding and removing content from the network. As such, we can create a storage guard that uses

48

similar techniques. We treat the CDN as a blob store, which stores a single copy of every published

piece of content. A NoSQL database is used to store user ownership metadata. Capabilities can

then be embedded in a unique URL to be linked from HTML pages.

3.1.8 Internal Services

To simplify development and improve modularity, a number of web applications are designed with

internal structure: a stateless frontend web server that coordinates calls to a mixture of backend

application, caching, and storage services. For example, an e-commerce site may operate different

internal web services for their shopping cart, user recommendations, personalized search, notifica-

tions, and customer support. As with frontend servers, these internal services often mix application

logic with access control and privacy enforcement, raising the vulnerability of user data to compro-

mise.

With Radiatus, internal services can exist within containers, with user credentials transparently

propagating from the frontend to the backend services. User containers are not always appropriate

or necessary. Some backend services are general purpose, such as a distributed configuration or lock

manager. Others require access to site-wide data, such as computing trending topics in Twitter.

By sandboxing frontend code, Radiatus provides defense in depth protection for these internal

services. More fundamentally, these services need to be treated as part of the trusted computing

base: carefully designed with a narrow interface that is hardened against attack.

In a few cases, internal services can be treated by the rest of the system as an untrusted user.

An example is a service to aggregate content for a public newsfeed. For this, Radiatus supports the

notion of a service user for shared computation. A service user encompasses a unit of aggregate

computation on behalf of the service. Service users are addressable like normal users, but their

containers run code on behalf of the service. Since service users communicate with normal user

containers, the service developer must apply defensive programming with the assumption that user

containers can be compromised, and vice versa. For example, one could apply differential privacy

libraries for privacy-preserving data collection.

49

3.2 Implementation

3.2.1 Radiatus Framework

We have implemented the Radiatus web framework as a collection of various software components.

A container runtime hosts a number of user containers on a server, each isolated in a unique

sandbox. A user router routes incoming requests to user containers. A storage guard mediates

calls to the storage systems by checking capabilities and translates the request to the database-

specific interface. Lastly, cross-container messaging is supported by a message queuing system and

a distributed container manager.

We have implemented Radiatus as a web framework in 8764 lines of code on the Node.js run-

time [27], where each user is allocated a Docker container [12] running a separate Node.js process.

We inject stubs for each of the Radiatus APIs and block any other interfaces normally provided

by Node.js. The Storage Guard interposes on user storage requests to expose a partitioned NoSQL

database, but internally uses MongoDB and memcached.

While our implementation uses Docker, the Radiatus design is compatible with other virtu-

alization technologies. Depending on the operating environment, performance, and security re-

quirements, developers can choose a virtualization technique that works for them, from OS-level

virtualization [12, 28, 24, 25] to full virtual machines [51, 23]

Our message-passing system fits the growing use of event-driven programming for web develop-

ment, similar to channels in Go [18], event emitters in Node.js [27], and Scala’s actor model [1]. As

with these systems, event-driven programming in Radiatus comes with a cost: added complexity

in managing long chains of actions. We describe developer experiences more fully next.

3.2.2 Applications

In order to explore the expressiveness of our Radiatus framework, we used it to build a number

of collaborative applications. Radiatus fits well with the wide range of web applications that

involve interacting users, including productivity software, games, social networking, e-commerce,

and media. Because Radiatus is a server-side web framework, developers are unrestricted in how

they design client-side user interfaces. Figure 3.5 shows the number of lines of code for each

50

Application Blizi FileDrop Chat

Total LOC 2958 614 285

Server-side LOC 870 219 133

User Interface LOC 2088 395 152

Figure 3.5: Lines of code to implement each application.

application we developed using Radiatus.

Academic Social Network: Blizi is an academic social network that allows authors to post papers

and solicit reviews from other users. The application also allows an author to privately share paper

drafts and reviews with certain individuals. The intent is to allow limited dissemination without

violating anonymous conference reviewing, as might occur when papers are posted to Facebook or

the Web. We have started to organize one of our seminars around this tool.

File Sharing: FileDrop allows a user to upload files to their user container. When a friend is

granted access to a file, the friend’s container can retrieve it from the storage service using the file’s

capability. The application can then serve the file to the friend’s browser.

Chat Messaging: The chat application uses the cross-container messaging system to relay chat

messages between people. In this particular example, we wrote a custom authentication manager

that automatically assigns everyone a pseudonym and registers them on a global buddy list.

3.2.3 Porting Existing Applications

We provide a simple tool for bundling existing Node.js libraries in Radiatus user containers. How-

ever, not all applications can be easily ported, such as those that use direct filesystem access.

While individual components of an existing Node.js web application can be ported using the same

tool, any application logic that requires global access to state must be rewritten to exist within a

restricted user container.

Arc Forum: Because the Radiatus container manager works with operating systems processes, we

51

can port applications written in other languages, subject to the same limitations above. We ported

the Arc Language Forum [123], the application behind the popular Hacker News web application, to

the user container model. The forum is written in Arc, a dialect of the Lisp programming language

that includes a built-in web server and libraries for generating HTML. The forum application

provides a social news web application using these language primitives. Because data is persisted

to files, rather than a database, the port required no changes to Arc Forum, and 188 lines of changes

to our user router and container runtime.

3.3 Evaluation

Our evaluation asks the following questions to understand the security and performance of Radiatus.

How do user containers prevent existing classes of attacks (§ 3.3.1)? Does the Radiatus implemen-

tation provide acceptable performance given the added overhead of user containers (§ 3.3.2)? What

is the incremental cost per user (§ 3.3.3)?

3.3.1 Security Analysis

Radiatus is designed to reduce vulnerability of user data to exploits that take advantage of bugs

in web server application code. To evaluate this, we analyzed all of the vulnerabilities in the

National Vulnerability Database (NVD) with a maximum severity score of 10.0 from 2014. The

Common Vulnerability Scoring System (CVSS) is an open industry standard, which reserves the

10.0 score for the most severe vulnerabilities that fit 6 criteria: (1) remotely exploitable, (2) low

barrier to access, (3) requires no authentication, (4) total information disclosure, (5) complete loss

of system integrity, and (6) leads to total loss of availability of the attacked resource. Out of all 7316

software vulnerabilities reported in 2014, only 233 received this score. Of these 233, we analyzed

the 40 that involved server-side web software. Many web applications are proprietary software

running on managed infrastructure, and bugs in that software are likely to be under-reported. As

a consequence, we expect Radiatus to help more cases than those reported in this section.

For each reported bug, we attempted to understand how the vulnerability affects the web

application if the software with the vulnerability was translated into the Radiatus model. Figure 3.6

lists each vulnerability, its original impact, and its impact in Radiatus.

https://news.ycombinator.com

52

CVE ID Short Description Original Impact in

Impact Radiatus

Code Injection and Buffer Overflow

CVE-2014-0294♠ MS Forefront 2010 improper email parsing Arbitrary Sandbox

CVE-2014-0474♠ Django improper type conversion Data leak Sandbox

CVE-2014-0650♠ Cisco Secure ACS allows arbitrary shell commands Arbitrary Sandbox

CVE-2014-0787F WellinTech KingSCADA buffer overflow Arbitrary Sandbox

CVE-2014-2866♣ PaperThin CommonSpot uses client-side JavaScript for access restrictions Arbitrary Sandbox

CVE-2014-3496� OpenShift Origin executes arbitrary shell commands in URL Arbitrary Sandbox

CVE-2014-3791F Easy File Sharing Web Server buffer overflow in cookie parsing of vfolder.php Arbitrary Sandbox

CVE-2014-3804 (+5)� AlienVault OSSIM executes arbitrary commands with crafted requests Arbitrary Sandbox

CVE-2014-3829� Centreon Enterprise Server executes arbitrary commands from command line variable Arbitrary Sandbox

CVE-2014-3913F Ericom AccessNow Server buffer overflow in AccessServer32.exe Arbitrary Sandbox

CVE-2014-3915� Tivoli Storage Manager executes arbitrary commands Arbitrary Sandbox

CVE-2014-4121♠ Microsoft .NET improperly parses internationalized resource identifiers Arbitrary Sandbox

CVE-2014-6321F Schannel in Microsoft Windows Server executes arbitrary code via crafted packets Arbitrary Sandbox

CVE-2014-7192♣ Node.js eval injection in syntax-error package Arbitrary Sandbox

CVE-2014-7205♣ Node.js eval injection in internals.batch() of lib/batch.js Arbitrary Sandbox

CVE-2014-7235♠ FreePBX executes arbitrary code via ari auth cookie in htdocs ari/includes/login.php Arbitrary Sandbox

CVE-2014-7249F Allied Telesis buffer overflow via crafted HTTP POST request Arbitrary Sandbox

CVE-2014-8361♠ miniigd SOAP service executes arbitrary code via crafted NewInternalClient request Arbitrary Sandbox

CVE-2014-8661 (+1)N SAP CRM executes arbitrary commands via unspecified vectors Arbitrary Unclear

CVE-2014-9190F Schneider Electric Wonderware InTouch Access Anywhere Server buffer overflow Arbitrary Sandbox

CVE-2014-9371♠ ManageEngine Desktop Central MSP executes arbitrary code via crafted JSON object Arbitrary Sandbox

Path Traversal

CVE-2014-0598] Novell Open Enterprise Server allows directory traversal Unclear Prevented

CVE-2014-0754� SchneiderWEB allows directory traversal Data leak Prevented

CVE-2014-2863 (+1)] PaperThin CommonSpot allows absolute path traversal Unclear Prevented

CVE-2014-3914[Tivoli Storage Manager allows arbitrary filesystem access Arbitrary Sandbox

CVE-2014-7985[EspoCRM allows remote include/execute via install/index.php Arbitrary Sandbox

CVE-2014-9373[ManageEngine NetFlow Analyzer executes arbitrary code via .. in the filename Arbitrary Sandbox

Improper Authentication

CVE-2014-0648♦ Cisco Secure ACS improperly enforces admin access Arbitrary Auth

CVE-2014-2075§ TIBCO Enterprise Administrator improperly enforces admin access Arbitrary Auth

CVE-2014-2609♦ Java Glassfish Admin Console in HP Executive Scorecard doesn’t check authentication Arbitrary Auth

CVE-2014-8329♥ Schrack Technik microControl stores sensitive information publicly in ZTPUsrDtls.txt Arbitrary Auth

SQL Injection

CVE-2014-3828∞ Centreon Enterprise Server SQL injection Data leak Sandbox

CVE-2014-5503∞ Sophos CyberoamOS SQL injection in Guest Login Portal Data leak Sandbox

Figure 3.6: Security analysis of all 40 web-related vulnerabilities in the National Vulnera-

bility Database from 2014 with the highest severity score. In most cases, an attacker would

be able to arbitrarily affect the service or access data. In Radiatus, we either prevent these

attacks entirely, restrict compromise within the user container sandboxes, or are mitigated

by the delegation of authentication logic to Radiatus, which can be shared and independently

audited.

53

• Arbitrary: exploitation leads to arbitrary code execution, service disruption, and information

disclosure;

• Data leak: bug can be leveraged to leak arbitrary information, but not run code;

• Prevented: bug cannot manifest in the target system;

• Sandbox: exploitation is limited to a single user’s sandboxed container;

• Auth: app developers delegate the responsibility of implementing authentication to Radiatus;

• Unclear: bug report did not specify enough details to make a determination.

In most cases, the original impact allowed an attacker to arbitrarily affect the service or access

data. In Radiatus, we either prevent the attack entirely, restrict compromise to the user containers

for which the attacker has user credentials, or require applications to delegate authentication logic

to Radiatus, which can be shared and independently audited.

Code Injection

The majority of high severity vulnerabilities involved code injection, which allows an attacker to

execute arbitrary code with the privileges of the server process and affect the state of any user. In

Radiatus, packets are only routed to a user container if the attacker has proper credentials, limiting

the scope of the attack.

• 6 (F) consist of stack-based buffer overflow vulnerabilities, which can be remotely exploited

by sending crafted network requests.

• 7 (♠) allow arbitrary code execution due to improper sanitization of inputs to components,

such as JSON parsers.

• 3 (♣) involve code injection vulnerabilities in JavaScript (e.g. calling eval(. . .) in Node.js).

• 9 (�) are vulnerabilities that allow a remote attacker to run shell commands with the privileges

of the server process.

• 2 (N) involve code injection via unspecified vectors.

54

Path Traversal

Similar in nature to shellcode injection, 7 vulnerabilities involved path traversal bugs (e.g. by adding

../ in the requested resource). When exploited these bugs can allow an attacker to read, write, and

execute files from the filesystem with the privileges of the server process. Radiatus confines all

application code in per-user sandboxes.

• 1 (�) allows remote attackers to read arbitrary files via crafted HTTP packets.

• 3 ([) consist of variations where an attacker can execute arbitrary commands by using ‘../’

to navigate to shell commands in input parameters.

• 3 (]) are known path traversal vulnerabilities with unknown impact.

Improper Authentication

4 vulnerabilities involved improper authentication checks. Most web frameworks require developers

to write custom authorization logic. Flaws in this logic can easily lead to privilege escalation. In

Radiatus, developers delegate authentication checks and enforcement to Radiatus, which can be

independently audited and shared across all applications.

• 1 (♥) stored sensitive credentials in publicly accessible resources, which attackers can use to

obtain privileged access.

• 2 (♦) do not require authentication to access a privileged interface.

• 1 (§) does not require authentication to issue arbitrary commands as an administrator.

SQL Injection

2 vulnerabilities (∞) involve SQL injection, allowing an attacker to exfiltrate data. With Radiatus,

the storage guard filters JavaScript from all commands going into the database and similarly filters

all outgoing data for values not belonging to the authenticated user. SQL injection has become

less common with the prevalence of parameterized client libraries. The number of SQL injection

vulnerabilities in the National Vulnerability Database has fallen from its peak of 1476 in 2008 to

261 in 2014.

55

Other Vulnerabilities

Cross-site scripting: The most common web vulnerability is cross-site scripting. No cross-site

scripting vulnerability in 2014 had a severity score exceeding 8.0. Radiatus is not aimed at these

vulnerabilities, but our implementation addresses them by using industry-standard CSP Policies [9].

Cross-container communication: While Radiatus makes it harder for wide-scale compromise

of an application, it is still possible to use cross-container messaging as a new attack vector if the

attacker can gain access to it (e.g. by exploiting a code injection vulnerability in the user container).

We restrict which containers can communicate, enforce typed interfaces, detect anomalous behavior,

restrict resource consumption, and evict bad actors from the system. Browsers [19, 21], operating

systems [133], and cloud providers [3] use similar techniques to protect communications between

mutually distrusting isolated processes.

3.3.2 Performance

Radiatus is designed to achieve better security at modest overhead. We evaluated the performance

of user containers on Amazon Web Services using r3.large EC2 instances (2 CPU, 15GB memory,

32GB SSD, $0.175/hr in 2015). We stress test the performance of a single web server and the

overall throughput of a web service over 500 servers.

Memory Overhead: In Radiatus, each user container is a sandboxed process, running a separate

copy of Node.js, the Radiatus runtime library, and the web application. When scaling the number

of active users on a single machine, memory quickly becomes a bottleneck in the context of a single

server. We measured the memory consumption across 100 user containers running our benchmark

suite and found the average container to consume 30.5MB. As such, each memory-optimized r3.large

EC2 instance was able to support around 490 processes before swapping.

Throughput Microbenchmark: Figure 3.7 shows the serving performance of a number of web

frameworks for generating simple dynamic web pages. The serving performance data was collected

using the Siege load testing tool, which simulates 100 users making HTTP requests in parallel.

The page response was an HTML page displaying a simple counter of how many replies had been

served so far. This experiment disables caching while stress testing the HTTP request handler.

56

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

R
uby O

n R
ails

C
herryPy

R
a
d
ia

tu
s

Apache+PH
P

Tornado

N
ode.js

Python-gevent

JavaH
TTP

T
h
ro

u
g
h
p
u
t
(r

e
q
/s

e
c
)

Web Framework

Figure 3.7: Comparison of single web server performance using the Siege Benchmark to make

1000 parallel connections at a time. Radiatus remains competitive with other frameworks

despite handling requests in isolated user containers.

57

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

)

Thousands of User Containers

100% read
90% read/10% write

100% write

Figure 3.8: Aggregate throughput with different workloads across a 500-node cluster. We

scale the number of user containers across our cluster, sending messages to each other via

AWS Simple Queuing Service.

While Radiatus performs additional routing to send requests to the proper container, our system

performs comparably to existing frameworks and better than some popular frameworks, such as

Ruby on Rails. Because the Radiatus router was written in Node.js, the microbenchmark shows a

maximum overhead of 60.7% over our baseline. We expect the relative overhead to be less in a real

web application, but we did not directly test that effect.

Macrobenchmarks: In order to stress test the system at scale and evaluate the performance of

the cross-container messaging system, we set up a cluster of 500 virtual machines (VMs) supporting

180,000 user containers, communicating through the AWS Simple Queuing Service. As a point of

comparison, Wikipedia in 2010 had 205 Apache web servers to support 414M readers and 100K

58

active editors per month, with 2000 HTTP requests per second [40]. In our benchmark, we stress

tested our file-sharing application under varying workloads. A read request consisted of a request

to the storage guard and a response containing an item from the user’s personal storage. A write

request consisted of sending a message to a peer container through the message router. Each

user container performs either a read or write request every 4 to 6 seconds. Figure 3.8 shows the

aggregate throughput of the system with various workloads. In Radiatus, the global performance

can be bottlenecked by both the database and the message queue. Developers will need to properly

balance these resources to fit the application workload.

3.3.3 Cost Estimation

The largest incremental cost of scaling a web service in Radiatus is the memory overhead of running

user containers for each active user. As reported in § 3.3.2, a single user container consumes 30.5MB

of memory when running our benchmark suite. Using average DRAM prices in 2015 [7] and an

average server life of 3 years, we can estimate the incremental memory cost of an active user to be

$0.007/year. To include the additional cost of CPU overhead, power, and space, we use current

EC2 pricing (2 cores @$0.175/hour). Assuming 1000 requests/day for each user and using the

differential CPU cost of handling requests in Radiatus versus Node.js from Figure 3.7, brings the

total cost to $0.008/user/year.

In order to estimate the potential cost of scaling such a system up to traffic levels seen by some

of the biggest web apps today, we can use Little’s Law and publicly reported numbers from the

Facebook Newsroom [15]. On average, Facebook supports 26 million concurrent users on the site,

for an estimated additional annual cost of $200K. Note that this cost will multiply in a service-

oriented architecture, depending on the number of internal services using Radiatus. Compared to

the average cost of a data breach recovery in the U.S. ($5.4M [190]), Radiatus may be appropriate

for security-conscious web applications with sensitive high-value data.

3.4 Summary

Modern trends in OS-level containers, cost of memory, and elastic cloud computing make it an

opportune time to revisit per-user isolation and study the costs at scale. Radiatus provides an

59

alternative model for web application design offering increased security over existing frameworks.

User containers are a lightweight mechanism to strongly isolate users within a web application.

We show that it is practical to provide per-user isolation, while offering performance competitive

with existing web frameworks, at modest cost per user. While application design with Radiatus

is different from traditional frameworks, we show that our APIs are expressive enough to support

many of the web applications today.

The web platform already treats the browser as a per-user isolated container running potentially

untrusted code. Leveraging this design pattern on the server provides a structured approach to

isolation, offering the same containment we expect from our own machines, mobile applications,

and multi-tenant data centers.

60

Chapter 4

AN EFFICIENT AND SCALABLE OBLIVIOUS MESSAGING
SERVICE

While the techniques in Chapter 3 limit the damage when cloud applications are remotely

exploited, it does not address insider attacks as a means to violate user privacy. Even expert

employees can be tricked into disclosing login credentials in phishing attacks, giving the attacker

internal privileges. Malware can be inadvertently installed on corporate networks when employ-

ees download malicious files. Governments around the world are increasingly compelling hosting

companies to disclose user data. To address these attacks on user privacy, we must treat the cloud

as an untrusted insider threat. In this chapter, we focus on addressing insider threats for a single

application, group messaging.

Messaging applications depend on cloud servers to send data between users, giving server op-

erators full insight into the communication patterns of the application’s users. Even if the commu-

nication contents are encrypted, network metadata, such as HTTP headers, can be used to infer

which users share messages, when traffic is sent, where data is sent, and how much is transferred,

allowing the network and provider to guess the contents of the communication [136]. When remote

hacking, insider threats, and government requests are common, protecting the privacy of communi-

cations requires that we guarantee security against a stronger threat model. For some users, such

as journalists and activists, protecting communication patterns is critical to their job function and

safety [165, 166].

In this chapter, we present Talek, a private group messaging system. Talek provides an efficient

single-writer several-reader log abstraction, storing asynchronous messages on untrusted servers

without revealing metadata. Users create logs for each message thread, which small groups of

trusted friends can read at a later time. As long as clients within a trust group and at least one

server are uncompromised and running authentic versions of the software, Talek prevents a cloud

operator from learning anything about the communication patterns of the users. Combined with

61

encryption, we conceal both the contents and metadata of users’ application usage without losing

the reliability and availability of the cloud.

Recent research has advanced both one-to-one private messaging [41, 43, 210, 232] and anony-

mous broadcasting [84, 85, 86, 149, 245]. These systems offer security guarantees rooted in k-

anonymity [223], plausible deniability [130] or differential privacy [101, 102]. Talek focuses on

a stronger security goal based on access sequence indistinguishability, where two arbitrary-length

client access sequences are indistinguishable to the server, and thus the server learns no information

about which users may be communicating. Existing systems guaranteeing indistinguishability are

either impractical due to prohibitive network costs [48, 119, 121, 181], or are custom-tailored for

specific applications [63, 126], limiting their applicability.

Talek provides a practical design for a private group messaging system with strong security goals

based on indistinguishability of access patterns. It is designed to be network bandwidth efficient —

usable with mobile clients reading and writing asynchronously to many message threads, each

modeled by a log.

Talek is based on private information retrieval (PIR) [78, 95, 118], but PIR by itself is not enough

to support a private group messaging system. We combine GPU-based performance improvements

with two novel techniques:

• Oblivious logging describes a new way to construct a real-time message broker that can deliver

messages with provable unlinkability between users.

• Private notifications allow users to determine which logs have new messages without polling

or revealing anything about their usage.

With oblivious logging, all clients issue identically sized random-looking read and write requests

to servers at an independent rate. Within a group of clients reading and writing to a message log, a

shared log secret determines the pseudorandom and deterministic sequence of locations for messages.

The writer places new messages in locations that appear random to the adversary. Any user with

the log secret can follow the pseudorandom sequence, reading new messages without coordination

with other users. Users are granted access to logs by receiving a secret from the log’s owner. These

secrets are shared using an in-band mechanism called control logs. Although Talek only supports

single-writer several-reader logs, we can emulate several-to-several communication by creating a log

62

for each writer. Users append to their own log and each member of the group subscribes to all logs

of the group.

Talek relies on private information retrieval (PIR) to read the message stored at a location with-

out disclosing to the server which location is being read. We apply updates and reads consistently

across PIR servers using timestamp ordering [57]. To support message asynchrony, servers store a

window of the latest n messages, purging older messages. Choosing a larger value for n means data

is stored on the database for longer, at the cost of more expensive reads. Messages are stored in a

cuckoo hash table to achieve efficient time and space usage without disclosing information to the

adversary.

With private notifications, users periodically retrieve a global interest vector, which privately

and efficiently encodes the set of all logs with new messages. Users apply the global interest vector to

locally prioritize reads. Servers maintain the global interest vector without leaking any information

about its contents.

In our system, the developer chooses l independent servers to host replicas of the data in an

anytrust model. The security model assumes at least one of the servers is honest. Our guarantees

hold for arbitrary behavior by the other servers, who may collude, share secrets, and send faulty

responses to clients. An adversary could control the network and l − 1 servers without impacting

the security of the system.

Talek does not guarantee liveness; a single faulty server can deny all use of the system in a way

that is detectable to all clients. Service providers are chosen with reputations for high availability.

Because clients connect directly to Talek servers, we also do not hide when users are online. We

expect the system to be used for communication among small groups of trusted users. If a log

secret is shared with the adversary, writer anonymity for that log is compromised, but readers’

anonymity and writer anonymity for other logs are preserved. Talek is best suited for applications

where users communicate with groups of trusted friends; any user in the group can block writes to

the log. Applications that require wide broadcasts to many untrusted users (e.g. a public blog), are

better served by anonymous broadcast [84, 85, 86, 245].

We have implemented Talek in Go and evaluated the system on a 3-server deployment using

Amazon EC2. Our source code is public. Our evaluation shows that for a messaging workload

63

where users send and receive 1KB messages every 5 seconds, we can support 32,000 concurrent

users sustaining a total throughput of 566,000 messages per minute with an average end-to-end

latency of 5.57 seconds. Like other PIR-based systems, PIR reads are the primary computational

bottleneck. Because clients send read and write requests at a regular rate, the amount of requests

the servers handle increases linearly with the number of clients. At the same time, the size of

the data stored in the server increases linearly with the number of clients. Finally, performing

PIR requires work linear with the size of the data. Consequently, the amount of work servers

perform grows with the square of the number of clients, or alternatively, the performance for clients

drops with the square of the number of clients. In all, we show that we can achieve 3–4 orders

of magnitude better performance than comparable systems with the same security goals. We also

show that Talek is practical for mobile applications, as clients only send requests when the device

screen is on, amounting to 9.2MB/day for our workloads. Further, our design is compatible with

horizontal scale-out to support higher message rates and/or more users, although this is left for

future work as discussed in Chapter 5.

This chapter highlights the following contributions:

• Oblivious logging is a new approach to achieving indistinguishability of access patterns, by

efficiently storing logs of messages on the server in a way that looks random to an adversary.

(Sections 4.3 and 4.4)

• Private notifications privately encode the set of new messages, helping clients prioritize reads.

(Section 4.5)

• Implementation and evaluation of Talek, which applies these two techniques in an end-to-end

messaging system with practical performance. (Sections 4.6 and 4.7)

4.1 Background

4.1.1 Threat Model

Figure 4.1 illustrates a system with mutually distrusting clients located across a wide-area network,

sharing data through Talek services, each hosted in a unique data center. We use the term ‘server’ to

64

Alice

Sybil
Clients

Server 1

Server 2

Server 3

Adversary

payload

payload

t1

t2

Bob

Write

Read

Track:
- Users
- Requests
- Times

Figure 4.1: System and threat model in Talek. We assume the adversary can control all

but one of l servers in the system (l = 3 in figure). Clients send network requests directly to

the servers. Adversarial servers are free to record additional data, such as the source, type,

parameters, timing, and size of all requests to link users who are likely to be communicating

together. All servers must be available and reachable by all clients.

65

refer to a single Talek service controlled by an independent administrative domain.1 The adversary’s

goal is to build a statistical model of users who are likely to be communicating.

Talek assumes the adversary controls all but one of a set of servers. Clients do not know

which server is honest. The adversary can also control the network and generate an unbounded

number of clients. We assume message storage capacity is scaled to the number of clients. We

assume all servers are collecting information about all client network requests, such as the source,

operation type, parameters, timing, and size of requests. The Talek protocol ensures correctness

and unlinkability, even when adversarial servers and clients exhibit arbitrarily malicious behavior,

such as if they collude, share secrets, and send faulty responses to clients. Our security guarantees

must hold even as clients are observed over long periods of time, such as in an intersection attack.

While session keys are exchanged in-band, we assume communicating clients already know

each other’s long-term public keys. Talek is compatible with bootstrapping keys from existing

applications [42], using identity-based encryption [62, 61, 150], or through an out-of-band channel.

Talek is designed for groups of mutually trusting users. We assume that users communicating

together trust each other not to disclose shared secrets. Generally, clients colluding with servers

cannot expose arbitrary users. However, malicious users can collude with any server to expose only

the writer of a log for which it has the log secret.

During normal operation, all servers must be available and reachable by all clients. Any single

server can deny all use of the entire system by refusing to respond or by responding with faulty

information. However, this behavior is detectable to the developer and clients. We assume devel-

opers will choose services with high reputations for availability. While we do not discuss it in this

thesis, Byzantine fault tolerant variations of private information retrieval [95, 118] can be used for

better liveness guarantees at the cost of higher overhead. Adversarial clients can degrade service

in denial of service attacks.

While not described in this thesis, other end-to-end guarantees, such as message integrity,

authentication [55, 203], forward secrecy [33], and fork consistency [154, 162], can be layered on top

of Talek by including additional data in the message payload. There exists a wide body of work

in secure messaging, which is largely compatible with this work [227]. Talek focuses on privacy of

1Our design allows each independent server to be implemented across multiple machines for scalable
performance and fault tolerance, but that is beyond the scope of this thesis.

66

access sequences.

We assume the existence of secure encryption, key-exchange protocols, signatures, hash func-

tions, and random number generators. We also assume that server public keys are known to all

users. These issues are orthogonal to the properties Talek is designed to provide.

4.1.2 Security Goals

We define access sequence indistinguishability using the following security game, played between

the adversary, A , and a challenger, C . A is a probabilistic, polynomial-time adaptive adversary,

who is in control of the network, all but one of the servers, and an unbounded number of clients.

A can drop any message, send arbitrary messages from any of the adversarial clients to any server,

respond arbitrarily to requests, and modify any server-side state for adversarial servers. Assume

the presence of authenticated secure channels between each client-server pair (e.g. with TLS).

1. A chooses a non-negative integer, m, and submits this number to the challenger, who spawns

m clients, C0 . . .Cm−1

2. The challenger flips a coin, b ∈ {0, 1}, uniformly at random, which is fixed for the duration

of the game.

3. For each of the challenger’s clients, Cj , A maintains two unique data access sequences, seq0j

and seq1j .

4. Repeat the following until A chooses to end the game:

• A chooses the i-th operation for both sequences for all challenger clients, {seq00[i] . . . seq0m−1[i]}

and {seq10[i], . . . seq1m−1[i]}. A submits the operations seq0j [i] and seq1j [i] to the respec-

tive client, Cj . Chosen operations can be a Read, Write, or NoOp to logs for which

the adversary does not hold the secret log handle, τ .

• Each client, Cj , plays one of the two operations, seqbj [i], into the Talek client library.

• Adversary-controlled clients can send arbitrary requests to any server. Adversary-

controlled servers can also modify its own state and respond arbitrarily.

67

• A observes the network events, eventsb
′
j [i] sent from C ’s clients to adversarial servers.

These events include Write and Read network requests.

5. A outputs its guess for b′.

Definition 1. (Access Sequence Indistinguishability) We say that the system provides access se-

quence indistinguishability if for any polynomial-time probabilistic adversary, any challenger clients,

and any data access sequences,

|Pr(b = b′)− 1/2| ≤ negl(λ)

in the security game, where λ is a security parameter and negl is a negligible function.

Practically, this definition means that an adversary would not be able to distinguish between

a real user’s access patterns from random access patterns of arbitrary length or an idle user. It

follows from this definition that the adversary should also not be able to determine which users

access the same logs, because the adversary could have chosen seq with overlapping logs across

users. These properties must hold regardless of how long a client is observed. We do not hide IP

addresses or when a user is online or offline from the system; instead users directly interact with

the servers. However, this must not undermine our security goal.

Note that A only specifies the actions of correct users and does not specify access sequences

between correct and adversarial clients. As described in Section 4.4.4, malicious clients with a log

secret could collude with an adversarial server to de-anonymize the writer to that log. While this

weakens A ’s power in the game, it is consistent with our goal of providing privacy guarantees to

groups of trusted users. Adversarial clients can still act arbitrarily against any server.

Access sequence indistinguishability provides one of the strongest definitions of privacy available.

It is stronger than k-anonymity [223], where the adversary can narrow the user to one of k users.

It is also stronger than plausible deniability [130], where information leakage is allowed up to a

certain confidence bound.

Informally, we achieve our security goal by designing the system such that

1. The schedule of requests seen by the server is independent from the data access sequence,

seq. Requests are made by all clients at an independent rate regardless of whether the client

actually needed to perform a Read or Write.

68

2. All parameters look random from the perspective of any l− 1 set of servers. Dummy request

parameters look indistinguishable from parameters of legitimate requests.

4.1.3 Intersection attacks

Talek’s goal of access sequence indistinguishability makes it less susceptible to intersection at-

tacks [91, 141, 163] compared to systems based on k-anonymity. If the application allows the user

to have periods of offline usage, then Talek is potentially susceptible to intersection attacks if two

users go online and offline at the same time, or if external events (e.g., protests) correlate with the

user’s online/offline status. As a consequence, Talek is best used with asynchronous user interfaces,

such as email.

In contrast, k-anonymity systems are vulnerable to intersection attacks even without these

correlations; every network request leaks information. Because mobile devices frequently go offline

to conserve energy, k-anonymity systems are weak under mobile workloads. Recent studies show

that mobile devices only experience on-screen activity 8.6% of the time [74].

4.1.4 System Goals

In order to be practical for modern workloads, Talek must also satisfy the following goals:

Performant: The system should support large numbers of ephemeral clients over a wide-area

network, comparable to the workloads supported by other privacy-preserving systems.

Low Latency: High-priority messages should be delivered in seconds, in order to support messag-

ing.

We answer the following questions in designing our messaging system:

• Random writes: How can users write in a way that appears random to the server? (Sec-

tion 4.3)

• Consistent Snapshots: How do we maintain consistent snapshots across servers despite up-

dates, for PIR operations to work over? (Section 4.3)

• Garbage collection: How do we constrain database size, keeping PIR operations tractable?

(Section 4.3)

69

• Zero coordination: How do readers leverage PIR without coordinating with the writer? (Sec-

tion 4.4)

• Notifications: How do we minimize the need to poll for new data? (Section 4.5)

4.2 Talek Design

Client Overview: Our system achieves our security goal by requiring all users to behave identically

from the perspective of any colluding set of l − 1 servers. Figure 4.2 illustrates how the system is

organized; Figure 4.3 enumerates the interfaces and client/server state; Figure 4.4 lists constants

that parameterize the design. We designed Talek to be easily integrated into existing messaging

applications. Developers link their messaging application to the Talek client library, calling Publish

and Subscribe on the client developer interface (CDI). When a function is called on the CDI, Talek

places it on an internal request queue, which gets translated into privacy-preserving Read and Write

network requests by the network protocol interface (NPI).

Every user issues equal-sized requests for each operation on the NPI (e.g. Read and Write)

at an independent rate, potentially issuing a dummy request if the respective request queue is

empty. The key constraint is that the distribution of network requests from a device is independent

from that user’s real usage. We describe the system using fixed rates of periodic requests for

convenience. In practice, the developer should measure real global usage and sample randomly from

this distribution. For example if the messaging user interface encouraged users to compose messages

that were independent from each other, then Talek should sample from a Poisson distribution with

a known average rate.

A dummy request, including its parameters and payload, must be indistinguishable from a le-

gitimate request. Messages are encrypted with a CCA-secure encryption scheme [56] to provide

confidentiality and authenticity. Thus, only the access pattern and not the contents of communi-

cation is disclosed when all servers collude. We define a globally-fixed message size, z, to which

messages are split and padded to fit. In practice, an application might run two parallel instances

of the Talek protocol, one for text-based data, and one with higher latency for images. Because we

expect Talek to be used with mobile and web applications, we can take advantage of pre-existing

data types specified in the application to facilitate such categorization.

70

App
libtalek

Client Developer Interface (CDI)
subscribe()

ReadWrite

Network Protocol Interface (NPI)

Server 1

publish()

write-queue

Data

Server 2 Server 3

read-queue

Figure 4.2: Overview of the Talek architecture. All clients must behave identically from

the perspective of any l − 1 servers. Any calls by the messaging application to publish or

subscribe are internally queued by the client library, which is then translated into a privacy-

preserving network request. The client library independently issues requests with equal-sized

parameters and messages that appear random to the adversary.

71

Client Developer Interface (CDI)

Publish(log, message)

Subscribe(log)

Network Protocol Interface (NPI)

Write(bucket1, bucket2, encryptedMsg, interestVector)

Read(requestVectors[]) → encryptedData

GetUpdates() → globalInterestVector

Client State

• logs - List of subscribed logs

• writeQueue - Queue of write operations

• readQueue - Queue of read operations

Server State

• log - Global log of write operations

• table - Blocked cuckoo hash table

Figure 4.3: Summary of Talek interfaces and client/server state

72

Server Overview: The server is designed to store a limited set of messages in order to allow asyn-

chronous senders and receivers to be decoupled in time, rather than participating in synchronous

rounds of communication. Because the cost of PIR operations scales linearly with the size of the

database, for good performance we globally fix the number of messages stored on the server to n,

garbage collecting the oldest. Thus, n is directly related to the time-to-live, TTL, for messages,

which dictates how tightly synchronized senders and receivers need to be. As the number of clients

in the systems grows, the system must use larger values of n to support the same TTL.

In order to efficiently pack these messages into a dense data structure that is compatible with

PIR, we store messages in a blocked cuckoo hash table [96], where each of the b buckets stores

a fixed number of messages, d. Client Write requests explicitly specify two pseudo-randomly

chosen buckets in which messages can be inserted, potentially resulting in cuckoo evictions (table

rearrangement) if both buckets are full. In a Read request, the hash table is treated as a PIR

database with each hash bucket as an entry. The client uses PIR to retrieve an entire hash bucket

without revealing to the server which bucket it retrieved. Each server stores a consistent replica of

the hash table to participate in the PIR protocol.

Blocked cuckoo hashing has a number of desirable properties for our system. Compared to

chained hash tables, buckets have equal fixed size, a necessary requirement for PIR. Each message

is stored in one of two buckets. To handle collisions, the size of the table must be larger than n by

a small overhead factor (generally less than 20% for reasonable values of the bucket size d).

A client issues at most two Read requests to check both buckets where a message could be

stored. If the client finds the message it is looking for in the first bucket, then it can use its next

Read request for another task, rather than querying the second cuckoo hash location. From the

server’s perspective, the client is simply issuing a stream of opaque PIR requests.

Private Log Overview: In order for users to write a series of messages without online coordi-

nation with other users, oblivious logging is used to hide messages within a stream of apparently

random writes. This log is defined by a secret log handle. Exposure of the log handle (e.g., by an

untrustworthy user) would expose the user’s write pattern, but not reader consumption. The log

handle is used with a pseudorandom function family, PRF , to generate a deterministic sequence

of buckets, called a log trail. The log writer stores encrypted messages along the log trail. Readers

73

use PIR to retrieve messages following the same sequence.

In order to avoid the need to poll for new messages, private notifications (§ 4.5) assist readers in

knowing when to read. With each write, clients submit a Bloom-filter-based interest vector, which

privately encodes the log ID and sequence number of the message. Servers combine the interest

vectors of all messages currently in the database to form a global interest vector, which privately

encodes which messages are currently stored on the server. Clients periodically retrieve this global

interest vector, which let them skip reading buckets with no new messages. Clients read and write

on their independent schedules, which is not changed by information from this vector.

The next few sections describe each aspect of the system more formally. We first consider

how Talek works with m idle online clients and l servers, illustrating the data structures, network

requests, and a framework for security (Section 4.3). Then, we expand on foundation to hide

legitimate traffic among requests using oblivious logging (Section 4.4) and private notifications

(Section 4.5).

74

Globally Configured

l constant Number of servers

n constant Number of messages stored on server

b constant Number of server-side buckets

d constant Depth of a bucket

z constant Size of a single message

w constant Per-user rate of writes

r constant Per-user rate of reads

Dynamically Measured

m variable Number of online clients

TTL n/(m ∗ w) Lifetime of a message on the server

load n/(b ∗ d) Load factor of the server hash table

Figure 4.4: Variables in the system, including those configured by the developer and dynamic

behavior measured at run-time.

75

4.3 Talek with Idle Users

Online clients issue dummy Read and Write requests at fixed rates of r and w respectively. We

choose an arbitrary server to be the leader, S0, with the rest of the servers forming the follower

set, [S1, . . . ,Sl−1]. All Read and Write requests are directed to the leader and forwarded down

the chain of followers.

Talek is further configured with a window size, n, such that messages older than the most

recent n are garbage collected and deleted. It is possible for clients to miss a message if they fall

behind and it is garbage collected. In this case, readers can request retransmissions as described in

Section 4.4.3. We show detailed pseudocode for the server in Figure 4.6.

4.3.1 Cryptographic Assumptions

Each server has a public-private key pair, pk, sk, generated using an algorithm PKGen(). We

assume the public key of each server is known to all clients. We write PKEncpk(text) for the

encryption of text under pk, and PKDecsk(cipher) for the decryption of cipher under sk. Clients

also have access to an efficient symmetric encryption scheme that provides authenticated encryp-

tion with associated data (AEAD). The associated data is authenticated, but not included in the

ciphertext. We write Enck(text, ad) for the encryption of text with key k and associated data ad,

and Deck(cipher, ad) for the decryption of cipher. Our implementation uses an IND-CCA2 [56]

RSA encryption scheme and AES-GCM for symmetric encryption. Let PRF (key, input) denote a

pseudorandom function family and PRNG(seed) denote a cryptographically secure pseudorandom

number generator. For the purposes of this description, let | denote tagged concatenation.

4.3.2 Strawman: Chained Hash Tables

We first consider a strawman approach to designing the server. Clients periodically write into

pseudo-random positions on the server. Suppose we model the server’s state as a table of b buckets,

and clients explicitly place writes in a bucket. To make reading oblivious to the server, clients would

use PIR to retrieve an entire bucket. To prevent collisions, the server must have a mechanism for

handling collisions.

One way to deal with collisions is to use chaining, where each bucket is a linked list of values.

76

Because PIR requires elements of equal size, buckets would need to be padded to the length of the

largest bucket. In the worst case scenario, one bucket could contain the entire database.

4.3.3 Write: Cuckoo Hashing

Talek organizes server-side state into a blocked cuckoo hash table [184, 96], where each server’s

storage is organized into b buckets, each bucket storing d messages, each of size z. PIR requests

fetch an entire bucket of size d · z. Figure 4.5 illustrates the server-side data structures. Cuckoo

hashing has a number of desirable properties for PIR-based reads. In practice, the number of

messages stored, n, is chosen as a fraction of the capacity of the cuckoo table, b · d. This fraction is

set to ensure with high probability, that a message will fit with minimal rearranging of the cuckoo

table [96].

• PIR requires buckets be of equal size. Talek’s blocked cuckoo hash table is configured with a

fixed depth, d.

• Individual PIR operations are relatively expensive. Cuckoo hashing bounds the maximum

number of client probes to 2.

• The cost of a PIR request scales linearly with the size of the database. Cuckoo hashing

enables dense placement of messages in a pre-allocated data structure with minimal wasted

space.

Because cuckoo hashing is a random algorithm and PIR requires consistent replicas across all

servers, a shared random seed enables all servers to achieve identical state as long as items are

inserted in the same order. The leader assigns each incoming request a global sequence number for

consistent ordering.

Client Write requests are generated using the following protocol. A client, C , periodically issues

random Write requests to the server. C is preconfigured with a randomly chosen kidle, which is used

to generate the i-th random number by PRF (kidle, i), and an idle encryption key kenc. Similarly,

all servers share a key kcuckoo, used to generate random values in the cuckoo algorithm below. The

i-th client request is generated as follows:

77

Server 1

Client

L1#1B1

write(buckets,data)

L2#2 L1#3
L1#2 L2#4 L2#5
L2#1 L3#1 L3#4
L1#4 L3#3 L1#5
L2#3 L3#2 L2#6

B2
B3
B4
B5

….

Rolling Global Log

….

Blocked Hash Table

B6 …. ….

L3#4
L4#1
L2#6
L1#7
L1#6

….

Server 2-3

n

d

b

Legend
Buckets: {B1,B2,…}
Logs: {L1,L2,…}

Figure 4.5: Oblivious logging data structures and workflow. The leader serializes all write

operations into a global log, assigning each message a globally unique sequence number.

Server-side state is replicated to all other servers from the leader. In order to garbage collect

old messages, we keep only the latest n messages. Client writes specify two random buckets

in which the message can be placed, forming a blocked cuckoo hashing scheme. Logs are

spread across the hash table, which can be read by the readers using PIR. Messages in the

same log are colored with the same shade in the diagram.

78

1. C chooses two random buckets,

β1 = PRF (kidle, i|1) mod b

β2 = PRF (kidle, i|2) mod b

where b is the number of buckets.

2. C encrypts a random z-length bit-string,

data = Enckenc(PRF (kidle, i|3) mod 2z)

and submits β1|β2|data to the leader, S0

3. Upon receiving the request, S0 forwards the request to all other follower servers, S1 . . .Sl−1,

each following the cuckoo algorithm in steps 4–7.

4. Each server deletes the n-th oldest element.

5. The server inserts β1|β2|data into the bucket at either β1 or β2 if there is spare capacity in

either bucket.

6. If both buckets are full, choose βe ∈ {β1, β2}, using randomness from kcuckoo. Let δe =

β1|β2|data.

7. Repeat the following until all values are inserted

(a) Try to insert δe in βe if the bucket has space.

(b) If not, randomly evict an entry in βe and insert δe in its place.

(c) Let δe equal the evicted value and βe equal its alternate bucket location.

Correctness: The leader is only responsible for assigning a global sequence number, which does

not affect security or correctness. If the leader misrepresents the global sequence number of a

message (e.g. by giving a different sequence number to different follower servers), it could cause

those replicas to become inconsistent. Because any follower could also deny service by failing to

respond or deviating from the protocol, the leader is in no more privileged a position to affect

79

correctness or liveness of the system than any other server in the system. In Section 4.4.3 we

describe how clients detect misbehavior.

Performance: Cuckoo tables have a maximum capacity that is lower than the size of the table,

b · d. The ratio of the maximum capacity of the cuckoo table to the allocated space is known as

the load factor, a function of the bucket depth, d. For example, the load factor for d = 1 is less

than 0.5, such that you must allocate twice as much memory as the number of items in the table.

The load factor grows asymptotically towards 1 as d increases [96]. For values of d > 3, the load

factor is over 95%. A high load factor translates to a more densely packed table and cheaper PIR

operations for the same number of messages in the database, n.

In Talek, the number of buckets b and the depth of each bucket d are tuned to the client

workload. Clients issue Reads with a random b-bit request vector and receive a O(d)-sized bucket

in response. A smaller value for b and higher d enables cheaper PIR reads and smaller request

vectors in PIR requests at the cost of larger network overhead for the response. This configuration

lends itself to frequent writes, common in chat applications. Conversely, a high value of b and low

value of d resembles a traditional cuckoo hash table, resulting in a lower load factor, but better

bandwidth utilization. This configuration is appropriate for infrequent writes of large messages,

such as for images.

4.3.4 Read: Serialized PIR

In order to reduce the network costs of Read requests to the client, we use a serialized variation of

PIR, which offloads work from clients to the leader. The client sends a single request to the leader,

containing PIRs for each follower, and receives a single response from the leader. We use one-time

pads to preserve the confidentiality of each server’s results, while allowing the leader to combine

them on behalf of the client. In contrast, traditional PIR requires that the client receive messages

from each server, and locally calculate the result.

A client, C , periodically issues random PIR requests to the server as follows:

1. C chooses a random bucket to read and generates b-bit PIR requests for each server, {q0, . . . , ql−1},

where b is the number of server buckets.

2. C generates a high-entropy random seed for each server,

80

{p0, . . . , pl−1}

3. C encrypts each server’s parameters with its respective public key and generates a Read

request,

PKEncpk0(q0|p0), . . . , PKEncpkl−1
(ql−1|pl−1)

4. C sends this request to the leader, S0, who forwards it to the remaining follower servers.

5. In parallel, each server, Si, decrypts its respective PIR request vector, qi and computes its

response, Ri.

6. Each server, Si, also computes a random one-time pad, Pi = PRNG(pi), from the seed

parameter. This one-time pad should be of equal size to Ri.

7. Each server, Si, responds to the leader with Ri
⊕
Pi.

8. S0 combines the server responses and responds to C with R0
⊕
P0

⊕
. . . Rl−1

⊕
Pl−1

9. C restores the bucket of interest by XOR’ing this response with each server’s one-time pad,

P0
⊕
. . .

⊕
Pl−1

Security: This serialized variant of PIR is functionally equivalent to the traditional PIR scheme

described in Section 2.3.3. As long as the adversary only has access to l− 1 servers’ secret keys, it

cannot decrypt the honest server’s request vector and reconstitute the secret request. Similarly, each

response is combined with a random one-time pad, which prevents the adversary from learning any

information from any individual server’s response. Because each server’s one-time pad is computed

from a shared secret with the client, the client can recover the underlying value.

Correctness and Liveness: As long as all servers are reachable and behave according to the

protocol, serialized PIR is functionally equivalent to its parallel form described in Section 2.3.3. If

any server deviates from the protocol or becomes unavailable, PIR operations would fail without

affecting the security of the system. The correctness and liveness guarantees are equivalent to the

parallel case.

Theorem 1. Serialized PIR (Informally)

81

1. Security: As long as there exists at least one server’s secret key that is unknown to the

adversary, the adversary learns nothing of the user’s secret request.

2. Correctness: The client receives the contents of the bucket corresponding to its request as long

as every server is reachable and behaves according to the protocol.

3. Liveness: Misbehavior or unavailability of any server would prevent PIR operations from

completing, but does not affect security.

4.3.5 Security Analysis of Idle Sequences

By definition, the access sequence, seqi, of each client is a null list. For each client, the adversary

observes eventsi, a log of randomly generated requests. In the protocol as described thus far, eventsi

is completely independent from seqi. While we use fixed rates for Read and Write for convenience,

our security goals are met as long as the rates are independent. For example, if requests follow a

Poisson distribution between the hours of 9am and 5pm for every user, our security properties still

hold. In the next section, we discuss how legitimate accesses are hidden among this cover traffic in

a way that is indistinguishable to the adversary.

4.4 Oblivious Logging

The goal of oblivious logging is to translate secret calls to Publish and Subscribe on the client

developer interface (CDI), into random-looking Write and Read network requests on the network

protocol interface (NPI). Critically, these Write and Read requests must look indistinguishable to

the adversary from the cover traffic described in Section 4.3. In this section, we describe our log

abstraction: single-writer, several-reader logs stored on Talek servers. A log is only ever written

by its creator, but it may be read by many clients. We show detailed pseudocode for the client in

Figure 4.7

4.4.1 Log Handles and Messages

When a user creates a new log, Talek generates a log handle, which contains a unique ID, id,

encryption key, kenc, and two seeds, ks1 and ks2. The log handle is a shared secret between the writer

82

and readers of a log. All messages are encrypted with kenc using a CCA-secure symmetric encryption

scheme, Enckenc(message). We further assign all messages in a log a sequence number, seqNo. The

two seed values are used in conjunction with a pseudorandom function family, PRF (seed, seqNo) ∈

{0 . . . (b− 1)}, to produce two log trails, unique and deterministic sequences of bucket locations for

writes. Similar in nature to frequency hopping [106, 99], log handles allow writers and readers to

agree on a pseudorandom sequence of buckets without online coordination.

4.4.2 Scheduling Requests

When a writer wants to publish a message, M , with sequence number seqNo to a log, the Talek

client library does the following:

• On the next periodic random Write request, β1|β2|data, replace its parameters with the

following:

β1 = PRF (ks1, seqNo) mod b

β2 = PRF (ks2, seqNo) mod b

data = Enckenc(M)

When a reader polls for the next message in a log at sequence number, seqNo, they do the

following:

1. On the next periodic random Read request, replace it with a PIR read to the first bucket,

PRF (ks1, seqNo) mod b

2. If the returned bucket is missing the message, on the following periodic random Read request,

replace it with a PIR read to the second bucket,

PRF (ks2, seqNo) mod b

3. Attempt to decrypt every message in the bucket using Deckenc(M) and return the result if

found

83

For both Write and Read, legitimate requests must follow the same periodic schedule as when

idle in Section 4.3. To the adversary, writes look indistinguishable from the idle case. Log handles

allow readers to find the latest content with zero coordination. Because reads are done with PIR,

many readers can poll the same log or poll the same bucket repeatedly without revealing any

information.

4.4.3 Control Logs

In order to facilitate control messages between users, we automatically generate a control log be-

tween every pair of users that share at least one log. We expect the log handle for the control log to

be generated and exchanged out of band when public keys are exchanged and verified. The control

log is used by the Talek system to send retransmission requests, bootstrap new logs by exchanging

new handles, and other control messages to coordinate between users.

Clients also use a control log to periodically send low-priority messages to itself. If these

messages are lost, it serves as a hint to the client of a denial of service attack. A limitation of our

work is that it does not give clients the ability to determine which server is misbehaving.

4.4.4 Security Analysis

We more formally prove the security of oblivious logging in Section 4.7.7. Informally, we prove the

security by reduction to cryptographic assumptions. For Read, we rely on the security properties

offered by PIR. PIR queries that correspond to legitimate requests are indistinguishable from a

PIR query for a random item [78]. For Write, we rely on the security properties of a PRF and our

encryption algorithm. We use an IND-CCA secure encryption algorithm for message payloads. For

any Write, the bucket locations are generated by a PRF, using either the log handle’s seed values,

(ks1, ks2), or the idle seed, kidle. In both cases, the output is indistinguishable from a random

function. [120].

A malicious client still has the ability to try to deny service by deviating from the protocol and

choosing a fixed bucket to DoS. DoS is limited by the fixed Write rate per client, the number of

Sybil clients, and the size of the database, n. We rely on the self-balancing nature of cuckoo tables,

where legitimate messages can be evicted to their alternate locations.

84

We assume the writer trusts the readers of a log. Log handles can expose a writer if shared

with adversarial servers, by observing the users that write to a known log trail. Even so, PIR

protects the privacy of readers. Writers must only use each output from PRF (seed, seqNo) for any

sequence number once.

85

//GlobalState

globalLog ← Array() . Global log of write operations

seqNo← 0 . Global sequence number

hashtable← BlockedCuckoo(b, d) . b buckets of depth d

1: //Writes the data into one of two buckets

2: function Write(buckets,data,interestV ec)

3: if isLeader() then

4: seqNo← seqNo+ 1

5: Append operation to globalLog

6: Forward operation to follower servers with seqNo

7: else

8: Insert operation into globalLog at given seqNo

9: end if

10: Remove n-th oldest element from hashtable

11: hashtable.insert(buckets[0], buckets[1], data)

12: end function

1: //Performs a PIR-based read

2: function Read(bucketV ector)

3: return bucketV ector · hashtable

4: end function

1: //Returns the global interest vector

2: function GetUpdates

3: v ← BloomFilter()

4: for all e ∈ last n elements of globalLog do

5: v ← v ∪ e.interestV ec

6: end for

7: return v

8: end function

Figure 4.6: Pseudocode for server-side RPC handlers (NPI). The NPI was designed such

that all parameters for any operation reveal no information about the user’s application

usage. Writes are serialized by the leader and replicated in global order to the follower

servers. When writing, clients explicitly specify the two potential hash table buckets into

which data is inserted. When data is read using a PIR protocol, we expose a blocked cuckoo

hash table with the n most recent messages in the log and return full buckets. For simplicity,

we only describe the original IT-PIR algorithm, which we show is equivalent to the serialized

PIR algorithm in Section 4.3.4

86

//GlobalState

logs←Map() . Latest sequence numbers seen for each

log

readQueue← Queue()

writeQueue← Queue()

1: function Publish(log, message)

2: Enqueue operation to writeQueue

3: end function

1: function Subscribe(log)

2: Add log to logs

3: end function

1: function PeriodicWrite

2: if writeQueue.isEmpty() then

3: Send a random write to the leader

4: else

5: log, data← writeQueue.dequeue()

6: seqNo← logs[t.id]++

7: bucket1← PRF (t.seed1, seqNo)

8: bucket2← PRF (t.seed2, seqNo)

9: data′ ← Enclog.key(data)

10: intV ec← BloomFilter()

11: intV ec.insert(log.id|seqNo)

12: leader.Write([bucket1, bucket2], data′, intV ec)

13: end if

14: end function

1: function PeriodicRead

2: if readQueue.isEmpty() then

3: Send a random read to each server

4: else

5: log, seqNo, seedChoice← readQueue.dequeue()

6: seed← (seedChoice == 1)?log.seed1 : log.seed2

7: data, queryl, query
′ ← [0 . . . 0]

8: query′[PRF (seed, seqNo)]← 1 . secret

9: for each server in followers do

10: query ← RandomBitString(numBuckets)

11: data← data
⊕
server.Read(query)

12: queryl ← queryl
⊕
query

13: end for

14: queryl ← queryl
⊕
query′

15: data← data
⊕
leader.Read(queryl)

16: if data contains (log, seqNo) then

17: return data

18: else if seedChoice == 1 then

19: Enqueue read (log, seqNo, 2) to readQueue

20: end if

21: end if

22: end function

1: function PeriodicUpdates

2: globalIntV ec← leader.GetUpdates()

3: for all log ∈ logs do

4: seqNo← logs[log.id]

5: if globalIntV ec.contains(log.id, seqNo) then

6: Enqueue read (log, seqNo, 1) to readQueue

7: end if

8: end for

9: end function

Figure 4.7: Pseudocode for the Talek client library. Calls to publish and subscribe are

queued in a global request queue. A periodic process either issues a random request or

dequeues a legitimate operation to be translated into a privacy-preserving NPI request.

Messages in a log are written to a deterministic random order of buckets. Subscribers then

use PIR to retrieve these messages. For simplicity, we describe the protocol assuming an

authenticated secure channel to each server. In practice, we use a functionally equivalent

serialized version of PIR described in Section 4.3.4.

87

1 {

2 logID: uint128 ,

3 seed1: uint128 ,

4 seed2: uint128 ,

5 encKey: byte[]

6 }

Figure 4.8: Log Handle

1 Encrypt ({

2 logId: uint128 ,

3 seqNo: uint64 ,

4 value: byte[],

5 signature: byte[],

6 }, encKey)

Figure 4.9: Message Payload

Figure 4.10: Schema of the log handle and a message payload. The log handle is a shared

secret between a trusted group of users, used to reconstitute a log from the servers. Each

message payload in the log is encrypted with a shared encryption key.

88

4.5 Private Notifications

Regular polling in Talek presents two problems. First, because every user polls at the same rate to

meet our security goal, message latency gets worse as the user subscribes to more logs. Second, it

is hard to know which log should be polled at any given time.

We introduce a private notification system that allows users to efficiently determine when new

messages have been published to a log without revealing their subscribed log list. By detaching

reads from notifications, clients can prioritize reads and reduce how often they read buckets with

no new messages.

4.5.1 Computing a Global Interest Vector

With every Write request, the client computes a Bloom filter, called an interest vector, encoding

the log ID and sequence number of the message being written,

v.insert(logId|seqNo)→ [b0 . . . b|v|]

If we use a large random log ID and h cryptographically-secure hash functions (modeled as

random oracles) in the Bloom filter, then the adversary has a negligible advantage in learning the

client’s input given the interest vector. Because the server can expect every interest vector to

contain only one element, it can also filter any malicious interest vectors where there are more ones

than hash functions used,
∑|v|

i=0 bi > h. If the Write request is a dummy request, we randomly

choose h bits to set to 1, with the remaining bits set to 0.

Servers maintain a global interest vector, computed by taking the union of all message inter-

est vectors of messages stored on the server. This data structure efficiently encodes the log ID

and sequence numbers of every message on the server without revealing anything to the server.

Clients periodically query for the global interest vector using GetUpdates, allowing each client to

independently determine which logs have new messages.

4.5.2 Security Analysis

The security of private notifications relies on the cryptographic hash functions used in the Bloom

filter. As long as we use a log ID with sufficient entropy, each interest vector provides a negligible

89

advantage in the indistinguishability security game.

Private notifications are only used to prioritize reads on the internal request queue. As such, it

has no impact on the security goals of oblivious logging. It simply reorders the schedule of private

requests.

Because private notifications are a parallel mechanism to oblivious logging, servers could ma-

nipulate the vector to influence clients. In order to detect server misbehavior, clients can retrieve

the global interest vector from every server, and ensure they are consistent.

4.6 Implementation

To demonstrate that Talek is practical, we implement a prototype in approximately 6,200 lines

of code; the source code is online. We implement two versions. The first, written in Go, runs

entirely on the CPU. The second offloads PIR operations to the GPU using a kernel written in C

on OpenCL. We wrote Go language bindings to share memory between the CPU implementation

and the GPU. The prototype uses SipHash [49] as the pseudorandom function, RSA for public-key

encryption, and AES-GCM for symmetric encryption.

4.7 Evaluation

Our evaluation addresses the following questions:

• What is the cost of operations for clients and servers?

• How does system performance scale with more users?

• How does Talek compare with previous work?

• What is the end-to-end latency of messages?

4.7.1 Setup

All experiments are conducted on Amazon EC2 P2 instances. These virtual machines are allocated

4 cores on an Intel Xeon E5–2686v4 processor and 61 GB of RAM. They also include an NVIDIA

K80 GPU with 2496 cores and 12 GB of memory. We use 3 servers; One is chosen as the leader

90

and the others are followers. We allocated an additional two VMs to run user clients. Each user

client issues periodic Read and Write requests to the server.

In order to evaluate a realistic workload, we chose system parameters to reflect public email

datasets from a large EU research institution [152] and Enron [144, 153]. We varied the number of

users, m ∈ (0, 35K], and the number of messages in the database, n ∈ {10K, 32K, 100K, 500K, 1M}.

We fix the message size to z = 1K and the number of subscribed logs per user to 10. For comparison,

the first month of the EU email dataset consisted of 254,080 emails across 38,090 different addresses

with an average degree of 5.75. The Enron dataset consisted of 33,696 users, 200,399 messages,

2.87KB average message size, and an average degree of 10.73.

While our experiments are run in a single data center, we expect the performance to be similar

for a more realistic cross-data center setting. This would incur higher network latency, both to

reach the leader and in communicating between servers. However these latencies will not impact

the results here which focus on the main bottleneck: the server-side computational cost of Talek.

4.7.2 Cost of Operations

To understand Talek’s costs, we benchmark different components of the system. Each value is the

average of 200 runs. We vary the number of messages on the server, n ∈ {10K, 100K, 1M}. We

fix the bucket depth in the blocked cuckoo table to 4, such that clients retrieve 4 messages at a

time. This depth allows the cuckoo table to support a load factor of 95%. The number of buckets

is chosen to hold n messages at the maximum load factor for the table. Figure 4.11 highlights the

results.

In general, client costs are low due to IT-PIR. Each write encrypts the message and uses a

PRF to determine the bucket location. The cost of Publishing rises with the database size due to

the Bloom filter. The cost of generating a PIR query also increases with the database size. Larger

values of n translate to more buckets and larger PIR request vectors.

For the server, we implement two versions of IT-PIR. Our CPU implementation is primarily

bottlenecked by memory bandwidth to the CPU. The GPU implementation accelerates performance

by 1–2 orders of magnitude by taking advantage of the inherent parallelism of PIR operations

across many GPU cores and the optimized on-device memory hierarchy. Writes incur negligible

91

Messages on Server (n)

10K 100K 1M

Client-side CPU costs

Generate new log handle 7753 µs

Publish (1 KB messages) 12.3 µs 70.5 µs 840.3 µs

PIR query 65.4 µs 574 µs 6888 µs

PIR response (1 KB messages) 146 µs

Server-side CPU costs

PIR Read: CPU (1 KB messages) 1.34 ms 11.1 ms 88.1 ms

PIR Read: GPU (1 KB messages) 0.073 ms 0.54 ms 4.36 ms

Write (1 KB messages) 0.0219 ms

Server-side storage costs

1 KB messages 24.1 MB 241 MB 2.41 GB

Network costs

GetUpdates 6.01 KB 59.9 KB 599 KB

Read request 0.96 KB 9.39 KB 93.7 KB

Read response (1 KB messages) 4.16 KB

Write request (1 KB messages) 1.08 KB

Figure 4.11: Cost of individual operations in Talek. We vary the number of messages stored

on the server, n. For values that do not depend on the number of messages on the server,

we write a single value in the left column.

92

cost compared to the cost of reads. In our current implementation, we store all messages twice in

memory. Writes are applied to the working copy stored in DRAM. Periodically, a snapshot of this

state is copied into the GPU. Read requests are batched and forwarded to the GPU for processing.

The leader is free to reorder reads without violating serializability.

Network costs between client and server are minimal. Clients must submit a read request

containing a b-bit vector for each server. The size of Read responses and Write requests are within

a small factor of the message size. The global interest vector returned from GetUpdates grows

linearly with n in order to preserve a fixed false positive rate of 0.1. This cost is independent of

the message size, such that its relative cost is lower for larger messages. In choosing a size for the

Bloom filter, we trade off bandwidth with the false positive rate. The network costs per operation

are identical between servers, as both Read and Write operations simply relay from the leader to

followers.

4.7.3 Cost of Cover Traffic

Because each Talek client must generate network traffic on a regular schedule that is independent

from the user’s real usage, developers must choose a global schedule that is appropriate for their

application. Naturally, there is a trade-off between efficiency and latency. At its most efficient, the

schedule matches the average workload, such that occasional users generate more dummy requests

to meet the average and prolific users are rate-limited. At the cost of higher overhead, application

developers can choose to send requests more frequently to proportionally reduce the average latency

of messages. This design decision will largely depend on application workloads.

As a concrete example, the first month of the EU email data set [152] contained 254,080 emails

involving 1,258 researchers at the research institution, or on average 201.9 messages per month.

If we were to configure each user to send and receive a message every 3.56 hours, the majority of

network requests would constitute real work, but end-to-end latency for messages is 7 hours in the

worst case. If Talek were configured to read and write four times as often, then most messages

would be seen by subscribers within 2 hours.

For the rest of this evaluation, we fix both the read and write rates to Publish and Poll every

5 seconds in order to stress test the system’s limits. Even at this rate, we believe the cover traffic

93

100K

200K

300K

400K

500K

600K

5K 10K 15K 20K 25K 30K 35K

T
h
ro

u
g
h
p
u
t
(m

e
s
s
a
g
e
s
/m

in
)

Clients

n=32K
n=131K
n=524K

Figure 4.12: Throughput of the system when varying the number of real clients. Each client

issues read and write requests every 5 seconds independently. Each line represents a different

value for n, the number of messages stored on the server. For larger values of n, each read

requires scanning a larger table, resulting in lower throughput.

for mobile devices is reasonable. In practice, users are engaged with their mobile devices only 8.6%

of the time [74]. As described in Section 4.1.3, because clients only need to send requests when

the device is online, we estimate this cover traffic to be about 9.2MB per day per client for our

workloads. Assuming the server supports 32000 users, the server would use 294.4GB/day.

94

4.7.4 Throughput

To understand Talek’s peak performance, we conducted an experiment with a simulated messaging

workload. Each client sends a message every five seconds, and receives a message every five seconds.

For each data point, we spawn a number of clients and measure the leader’s response rate over 5

minutes, giving the system enough time to reach steady-state performance. Writing in Talek is

cheap, so we limit our workload such that each written message must be read before being garbage

collected. If writes were not throttled, servers could easily accommodate a higher write throughput,

while reads are bottlenecked by PIR computation.

Figure 4.12 shows the results for three values of n ∈ {32K, 131K, 524K}, the number of messages

stored on the server. For small numbers of clients, the server achieves linear growth in throughput,

demonstrating that the PIR operations are keeping up with read requests. The throughput is

bottlenecked by the GPU’s PIR process. Smaller values of n correspond to a smaller cuckoo table,

resulting in cheaper PIR operations and higher throughput. We only evaluate the system with

numbers of clients, m, such that m < n, corresponding to a message lifetime of at least one round

of reads.

4.7.5 Comparison with prior work

In order to understand the relative performance between Talek with prior work, we benchmarked

the Read and Write mechanisms. Figure 4.13 shows the relative throughput of each system.

Pung [48] is a read/write key-value based on computational PIR (C-PIR). Pung has a stronger

threat model than Talek, where all servers are assumed to be untrusted. Pung uses an imple-

mentation of C-PIR called XPIR [45] for reads, which we compare to our IT-PIR implementation.

For 256 B messages, XPIR took 117ms and 11.55s per message for table sizes of 10K and 100K

respectively. Because the memory on the test machine was exhausted at n = 200K, we estimate

that XPIR would take at least 100s for n = 1M if the cost were to increase linearly. XPIR

leverages lattice-based homomorphic encryption and efforts to build special-purpose cryptoproces-

sors [208, 205] have yielded at most a 10x performance boost. This still leaves a computational

cost that is 3–4 orders of magnitude higher than Talek, limiting its practicality for real-world use.

In contrast, Talek is easily parallelizable and accelerated using commodity GPUs.

95

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Reads(n=10K)

Reads(n=100K)

Reads(n=1M)

Writes(n=10K)

Writes(n=100K)

Writes(n=1M)

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
s
ts

/s
) Talek

Pung
Riposte

Figure 4.13: Performance comparison of Read and Write handlers of various systems. Pung

uses C-PIR, which imposes a computational cost that is 3–4 orders of magnitude higher than

our IT-PIR implementation. Riposte uses a write mechanism based on a reverse variant of

PIR which incurs O(
√
n) cost compared to Talek’s O(1) writes.

96

Talek Pung Riposte Vuvuzela

Client-side CPU

Read O(l) O(log(n)) 7 O(l)

Write O(1) O(1) O(
√
n) O(l)

Server-side CPU

Read O(ln) O(n · log(n)) 7 O(l)

Write O(l) O(log(n)) O(
√
n) O(l)

Server-side storage O(ln) O(n) O(ln ·
√
n) O(n)

Network costs

Read request O(ln) O(n · log(n)) 7 O(1)

Read response O(1) O(log(n)) 7 O(1)

Write request O(1) O(1) O(l ·
√
n) O(1)

Write response O(1) O(1) O(1) O(1)

Figure 4.14: Comparison of the asymptotic complexity of computational, storage, and

network costs between related work. Costs are parameterized on the number of servers, l,

and the size of the database, n. Talek and Pung share a stronger security goal compared to

Vuvuzela and Riposte. Riposte does not specify a read mechanism.

97

Pung has higher network overhead that Talek. Pung uses an interactive binary search algorithm

for retrieval, requiring O(log(n)) round trips between client and server, compared to the O(1) cuckoo

table lookup in Talek. Thus, to retrieve a 1KB message from a database size of n = 32K messages,

Pung requires 15 rounds of PIR requests and 36.7MB of data, while Talek makes 2 requests and

transfers < 12KB. Even if Pung used IT-PIR, their read/write protocol would be impractical for

mobile workloads.

Riposte [84] is an anonymous broadcast system that uses PIR in reverse to anonymize writes to a

database. Riposte has a weaker security goal based on anonymity within a round of communication

and does not offer privacy over multiple rounds of communication. The Riposte implementation

does not include an implementation for reads. Riposte writes incurs O(
√
n) cost compared to

Talek’s O(1) writes.

Vuvuzela [232] has a weaker security goal based on differential privacy and noise but better

performance. It scales to millions of users with a peak throughput of nearly 4M messages/min

using the same number of servers as Talek. Although we have not implemented sharding, Talek is

designed to be horizontally scalable to allow system throughput to increase by spreading buckets

across servers and then combining the results. In this case, the leader and followers each consists

of r replicas. Writes must be replicated to every replica server; however, this is acceptable because

writes are inexpensive. Reads only require participation from one server in each replica group,

which allows the system to scale for read-heavy workloads, similar to Vuvuzela.

4.7.6 End-to-End Latency with Notifications

In order to understand the latency of message delivery, we used the same messaging workload as

in the throughput experiment, each user client sending and receiving messages every 5 seconds.

Two additional clients are created, a sender and a receiver. We measure the end-to-end time for

a message sent by the sender to be seen by the receiver, varying the number of logs to which the

receiver client is subscribed. The spread of each value over 20 trials reflects the read and write

rates.

Figure 4.15 shows the results with and without private notifications. When notifications are

off, the client polls each log in a round robin fashion until it notices the new message. Because the

98

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

E
n
d
-t

o
-E

n
d
 L

a
te

n
c
y
 (

s
e
c
)

Subscribed Topics Per Client

without notif.
with notif.

Figure 4.15: End-to-end latency of message delivery when a client is subscribed to multiple

logs. Each data point represents 20 trials. With notifications, clients can prioritize logs with

new messages.

99

read rate is fixed, the end-to-end latency grows linearly with the number of subscribed logs. With

private notifications, the receiver periodically receives a global interest vector that encodes the log

with the new message, allowing it to prioritize that read. As a result, the end-to-end latency for a

single message is relatively fixed.

4.7.7 Proof of Access Sequence Indistinguishability

We provide a security proof for Talek’s protocol by reduction to the cryptographic assumptions

listed in Sections 4.1 and 4.3.

Theorem 2. Talek security:

Talek provides access sequence indistinguishability.

Proof:

We consider a series of games adapted from the game above, each defined from the previous

one by idealizing some part of the protocol. For game i, we write pi for the maximum advantage,

|Pr(b = b′) − 1/2|, that A holds in the security game. At each step, we bound the adversary’s

advantage between two successive games. Technically, each of the following games consists of a

series of hybrid games, where we change each of the m clients one by one.

Game 0: Consider the game defined above with an adversary A that chooses m challenger clients,

and submits sequences with α0 calls to Poll and α1 calls to Write.

Game 1: (PIR Read) This game is as above, except we replace the PIR request vectors, qj ,

generated in Poll, with a bitstring qj ← {0, 1}b sampled at random. Let εPIR(λ0, n) bound the

advantage of an adversary breaking the PIR assumption in n calls to Read with security parameter

λ0. The adversary distinguishes between the request vectors in Game 0 and the randomly sampled

requests in Game 1 with advantage εPIR(λ0, α0).

p0 ≤ p1 +m · εPIR(λ0, α0)

Game 2: (IND-CCA with Write) This game is as above, except that for each client, we maintain

a table T that maps ciphertexts under key k to plaintext messages δ. Publish is modified to encrypt

a dummy message instead of δ and to record in T the resulting ciphertext and δ. Attempting to

100

decrypt any ciphertext not in the table is rejected. Poll is modified to retrieve plaintext from

T . We can apply our IND-CCA assumption for AEAD to each key k. Let εAEADIND−CCA(λ1, n) be

the advantage of an IND-CCA adversary that performs n oracle encryptions and decryptions with

security parameter λ1.

p1 ≤ p2 +m · εAEADIND−CCA(λ1, α1)

Game 3: (PRF with Write) This game is as above, except we replace the PRF used to gen-

erate the bucket locations of Writes with a perfect random function. Let εPRFdistinguish(λ2, n) bound

the advantage of an adversary breaking our PRF assumption in n calls to PRF with a security

parameter, λ2

p2 ≤ p3 + 2 ·m · εPRFdistinguish(λ2, α1)

Game 4: (Hash functions in interest vectors) This is game is as above, except we replace

the h cryptographic hash functions used in the Bloom filter of the message interest vector with

queries to a random oracle. Thus, the message interest vector will contain all 0’s, except for 1’s in h

random positions. Let εhash(λ3, n) bound the advantage of an adversary breaking our assumption

of cryptographic hash functions in n calls with a security parameter, λ3.

p3 ≤ p4 +m · εhash(λ3, α1)

From this final game, all of the parameters in any network request have been replaced with ran-

dom values. Because Game 4 involves all clients issuing periodic requests with random parameters,

by definition the adversary’s advantage, p4, must be zero.

Privacy: Collecting the probabilities from all games yields:

p0 ≤m · εPIR(λ0, α0)+

m · εAEADIND−CCA(λ1, α1)+

2 ·m · εPRFdistinguish(λ2, α1)+

m · εhash(λ3, α1)

p0 becomes negligible for large security parameters λ0, λ1, λ2, and λ3.

101

4.8 Summary

In this chapter, we present Talek, a general-purpose private group messaging system. Talek protects

both the contents and metadata of users’ application usage from untrusted servers. We show that

strong security goals based on access sequence indistinguishability, where the adversary provably

learns no information about which users may be communicating, is practical with two new tech-

niques, oblivious logging and private notifications. Our evaluations confirm that our implementation

achieves 3–4 orders of magnitude better performance than previous systems with similar security

goals.

102

Chapter 5

CONCLUSION

The cloud will only grow in importance as a platform for processing and storing sensitive user

data as more users become connected and devices gain network access. As the cloud plays an

increasingly important role in our lives, we need to develop systems and techniques to safeguard

user privacy in cloud applications. Users want strong guarantees that their data is only accessed

by parties that the user expects. This thesis presents two novel systems to protect user privacy

against realistic threats, while also providing good performance.

Radiatus secures full-featured applications from external intrusion, by isolating server-side code

execution into per-user sandboxes and using a distributed capabilities system to efficient share data

between users. This architecture protects applications from a large class of vulnerabilities, but it

comes at the cost of added overhead of 60.7% per server and an additional 31MB of memory per

active user. I demonstrate that the system can scale to 20K operations per second on a 500-node

AWS cluster.

I then extend the threat model to include cloud insider attacks and design Talek, a private

messaging system that is resilient to an untrusted cloud. Talek provides access sequence indistin-

guishability, preventing an adversary from learning anything about user communication patterns.

Talek offers 3–4 orders of magnitude better performance compared to related work with similar

security goals. Our implementation of a 3-server Talek cluster achieves a throughput of 566K

messages per minute with 5.57-second end-to-end latency on commodity servers.

Future Work in Practical Privacy

In future work, I plan to continue working on designing practical systems with stronger security

and privacy properties and deploying them in practice.

103

Scaling privacy services

Beyond designing provably secure systems, how can we engineer privacy services to support the

traffic demands of popular web and mobile applications? Designing for scalability, fault tolerance,

and consistency are critical to getting these systems used in practice. As an example, Talek is

designed to be horizontally scalable to allow system throughput to increase by spreading data

across servers and then combining the results. Co-designing scalable architectures with specialized

hardware accelerators, such as GPUs and FPGAs, will also help improve performance.

Recovering from faulty servers

Privacy-based services, such as Talek, can be vulnerable to attacks on liveliness if servers decide

to misbehave. While one can leverage multiple independent clouds, designing for fault tolerance

under malicious participants requires new protocols that allow users to determine the source of the

problem and use alternatives.

Integrating privacy into existing applications

Another area for further research is application integration. Privacy research often requires that

clients adhere to multiple constraints, such as a fixed message length and a fixed rate of sending

messages. In practice, these constraints impose usability costs to the user, resulting in message

delays or unexpected behavior. I plan on studying real application workloads to better design

mathematical models for privacy-preserving client behavior with usability in mind. I also plan to

study better programming models for integrating privacy primitives into existing applications and

embedded devices. For example, we can use programming languages to help developers reason

about privacy in their code and to bound information leakage.

Computing over private data

Often, what the developer wants is the insight and value derived from the data. For example, an

application might want a machine learning model trained from data across many users. How can

we leverage advances in cryptographic primitives, to cooperatively train machine learning models

104

without revealing user data to third parties? Similarly, can we redesign big data systems to privately

compute results without access to unencrypted user data?

Leveraging hardware advances to accelerate private computation

As described in Chapter 2, trusted processors, PIR, and ORAM present an opportunity to build

arbitrary applications with strong security goals with efficient performance. By relying on the

hardware to protect confidentiality of computations within a CPU, we can design more performant

systems by offloading sensitive computations to trusted processors. Trusted processors could also

reduce the need to rely on expensive cryptographic primitives, like homomorphic encryption. How

can we leverage these hardware advances to accelerate privacy-preserving applications and com-

putations? Consequently, we may be able to provide practical performance for arbitrary cloud

applications from both external and insider threats.

As Melvin Kranzberg put it, ”Technology is neither good nor bad; nor is it neutral.” The cloud

has enabled countless new applications that have improved the lives of many people around the

world. Along with every technological advancement comes with it, social, political, and human

consequences that go beyond the immediate designed benefits. As we grow to depend on the cloud,

we carry a responsibility to design new systems with a modern understanding of its consequences,

systems that respect the dignity, freedom, and privacy of all people.

105

BIBLIOGRAPHY

[1] Akka Actor Model. http://akka.io/

[2] Amazon Information Request Report. https://d0.awsstatic.com/certifications/

Information_Request_Report_June_2016.pdf

[3] Amazon Web Services. https://aws.amazon.com

[4] Apache HTTP Server Benchmarking Tool. https://httpd.apache.org/docs/2.2/

programs/ab.html

[5] Apache Kafka. https://kafka.apache.org/

[6] Apache Virtual Host. https://httpd.apache.org/docs/2.2/vhosts/

[7] Average Selling Price of DRAM 1Gb Equivalent Units from 2009 to 2017. http://www.

statista.com/statistics/298821/dram-average-unit-price/

[8] Benchmarking Go and Python Web servers. http://ziutek.github.io/web_bench/

[9] Content Security Policy 1.0. http://www.w3.org/TR/CSP/

[10] CWE/SANS Top 25 Most Dangerous Software Errors. http://cwe.mitre.org/top25/

[11] Django: How to Use Sessions. https://docs.djangoproject.com/en/dev/topics/http/

sessions/

[12] Docker. https://www.docker.com

[13] eBay Digital Service Efficiency. http://tech.ebay.com/dashboard

[14] Facebook Government Requests Report. https://govtrequests.facebook.com/

[15] Facebook Newsroom. https://newsroom.fb.com/company-info/

[16] Firebase. https://www.firebase.com

[17] Freedom on the Net 2016. https://freedomhouse.org/report/freedom-net/

freedom-net-2016

[18] Go Language Specification. http://golang.org/ref/spec

[19] Google Chrome Multi-process Architecture. http://blog.chromium.org/2008/09/

multi-process-architecture.html

[20] Google Transparency Report. https://www.google.com/transparencyreport

http://akka.io/
https://d0.awsstatic.com/certifications/Information_Request_Report_June_2016.pdf
https://d0.awsstatic.com/certifications/Information_Request_Report_June_2016.pdf
https://aws.amazon.com
https://httpd.apache.org/docs/2.2/programs/ab.html
https://httpd.apache.org/docs/2.2/programs/ab.html
https://kafka.apache.org/
https://httpd.apache.org/docs/2.2/vhosts/
http://www.statista.com/statistics/298821/dram-average-unit-price/
http://www.statista.com/statistics/298821/dram-average-unit-price/
http://ziutek.github.io/web_bench/
http://www.w3.org/TR/CSP/
http://cwe.mitre.org/top25/
https://docs.djangoproject.com/en/dev/topics/http/sessions/
https://docs.djangoproject.com/en/dev/topics/http/sessions/
https://www.docker.com
http://tech.ebay.com/dashboard
https://govtrequests.facebook.com/
https://newsroom.fb.com/company-info/
https://www.firebase.com
https://freedomhouse.org/report/freedom-net/freedom-net-2016
https://freedomhouse.org/report/freedom-net/freedom-net-2016
http://golang.org/ref/spec
http://blog.chromium.org/2008/09/multi-process-architecture.html
http://blog.chromium.org/2008/09/multi-process-architecture.html
https://www.google.com/transparencyreport

106

[21] IE8 and Loosely-Coupled IE (LCIE). http://blogs.msdn.com/b/ie/archive/2008/03/11/
ie8-and-loosely-coupled-ie-lcie.aspx

[22] Intel Software Guard Extensions. https://software.intel.com/en-us/sgx

[23] Kernel Virtual Machine. http://www.linux-kvm.org/page/Main_Page

[24] Linux-VServer. http://linux-vserver.org/

[25] lmctfy. https://github.com/google/lmctfy

[26] National Vulnerability Database. https://nvd.nist.gov/

[27] Node.js. http://nodejs.org/

[28] Open Container Initiative. http://www.opencontainers.org/

[29] Open Web Application Security Project. https://www.owasp.org

[30] Passport.js. http://passportjs.org/

[31] RemoteStorage. http://remotestorage.io/

[32] Siege. http://www.joedog.org/siege-home/

[33] Signal. https://whispersystems.org/

[34] Snapchat Security Advisory. http://gibsonsec.org/snapchat/

[35] Spideroak. https://spideroak.com/

[36] Two Billion People Coming Together on Facebook. https://newsroom.fb.com/news/2017/
06/two-billion-people-coming-together-on-facebook/

[37] Understanding Service-Oriented Architecture. http://msdn.microsoft.com/en-us/

library/aa480021.aspx

[38] Web hacking incident database. http://projects.webappsec.org/w/page/13246995/

Web-Hacking-Incident-Database

[39] GreenSQL. http://www.greensql.com/ 2009.

[40] Wikimedia Foundation Annual Report. http://upload.wikimedia.org/wikipedia/

commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf 2011.

[41] Pond. https://github.com//agl/pond 2016.

[42] Keybase. https://keybase.io/ 2017.

[43] Ricochet: Anonymous peer-to-peer instant messaging. https://github.com/ricochet-im/
ricochet 2017.

http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
https://software.intel.com/en-us/sgx
http://www.linux-kvm.org/page/Main_Page
http://linux-vserver.org/
https://github.com/google/lmctfy
https://nvd.nist.gov/
http://nodejs.org/
http://www.opencontainers.org/
https://www.owasp.org
http://passportjs.org/
http://remotestorage.io/
http://www.joedog.org/siege-home/
https://whispersystems.org/
http://gibsonsec.org/snapchat/
https://spideroak.com/
https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook/
https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook/
http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://msdn.microsoft.com/en-us/library/aa480021.aspx
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database
http://www.greensql.com/
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
https://github.com//agl/pond
https://keybase.io/
https://github.com/ricochet-im/ricochet
https://github.com/ricochet-im/ricochet

107

[44] Atul Adya, Gregory Cooper, Daniel Myers, and Michael Piatek. Thialfi: a Client Notification
Service for Internet-Scale Applications. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP ’11), pages 129–142. ACM, 2011.

[45] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. XPIR:
Private Information Retrieval for Everyone. Proceedings on Privacy Enhancing Technologies
(PETS ’16), 2016(2):155–174, 2015.

[46] Carlos Aguilar-Melchor and Philippe Gaborit. A Lattice-Based Computationally-Efficient
Private Information Retrieval Protocol. Cryptology ePrint Archive, Report, 446, 2007.

[47] Fredrik Almroth and Mathias Karlsson. How We Got Read Access on Google Production
Servers. http://blog.detectify.com/post/82370846588/

[48] Sebastian Angel and Srinath Setty. Unobservable Communication over Fully Untrusted In-
frastructure. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16). USENIX Association, 2016.

[49] Jean-Philippe Aumasson and Daniel J Bernstein. SipHash: a Fast Short-input PRF. In
International Conference on Cryptology in India, pages 489–508. Springer, 2012.

[50] S. Balasubramaniam and Benjamin C. Pierce. What is a File Synchronizer? In Fourth Annual
ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom ’98),
October 1998.

[51] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. ACM SIGOPS
Operating Systems Review, 37(5):164–177, 2003.

[52] Douglas Barry and Torsten Stanienda. Solving the Java Object Storage Problem. Computer,
31(11):33–40, 1998.

[53] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the Art: Automated
Black-box Web Application Vulnerability Testing. In IEEE Symposium on Security and
Privacy (SP ’10), pages 332–345. IEEE, 2010.

[54] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding Applications from an Un-
trusted Cloud with Haven. ACM Transactions on Computer Systems (TOCS), 33(3):8, 2015.

[55] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message Au-
thentication. In Annual International Cryptology Conference, pages 1–15. Springer, 1996.

[56] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations Among
Notions of Security for Public-Key Encryption Schemes. In Annual International Cryptology
Conference, pages 26–45. Springer, 1998.

[57] Philip A. Bernstein and Nathan Goodman. Concurrency Control in Distributed Database
Systems. ACM Computing Surveys, 13(2):185–221, June 1981.

http://blog.detectify.com/post/82370846588/

108

[58] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and V.N. Venkatakr-
ishnan. NoTamper: Automatic Blackbox Detection of Parameter Tampering Opportunities
in Web Applications. In Proceedings of the 17th ACM Conference on Computer and Com-
munications Security (CCS ’10), pages 607–618. ACM, 2010.

[59] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V.N. Venkatakrishnan. WAPTEC:
Whitebox Analysis of Web Applications for Parameter Tampering Exploit Construction. In
Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS
’11), pages 575–586. ACM, 2011.

[60] Aaron Blankstein and Michael J Freedman. Automating Isolation and Least Privilege in Web
Services. In IEEE Symposium on Security and Privacy (SP ’14). IEEE, 2014.

[61] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based Encryption with
Efficient Revocation. In Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security (CCS ’08), pages 417–426. ACM, 2008.

[62] Dan Boneh and Matt Franklin. Identity-based Encryption from the Weil Pairing. In Annual
International Cryptology Conference, pages 213–229. Springer, 2001.

[63] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A Private Presence Service. Pro-
ceedings on Privacy Enhancing Technologies (PETS ’15), 2015(2):4–24, 2015.

[64] Justin Brickell and Vitaly Shmatikov. Efficient Anonymity-Preserving Data Collection. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 76–85. ACM, 2006.

[65] Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Zaveri, and David Evans.
GuardRails: A Data-Centric Web Application Security Framework. In Proceedings of the 2nd
USENIX Conference on Web Application Development, 2011.

[66] Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich. Separating Web Applications from
User Data Storage with BSTORE. In Proceedings of the USENIX Conference on Web Ap-
plication Development. USENIX Association, 2010.

[67] Ramesh Chandra, Taesoo Kim, Meelap Shah, Neha Narula, and Nickolai Zeldovich. Intrusion
Recovery for Database-backed Web Applications. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP ’11), pages 101–114. ACM, 2011.

[68] Ramesh Chandra, Taesoo Kim, and Nickolai Zeldovich. Asynchronous Intrusion Recovery
for Interconnected Web Services. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP ’13), pages 213–227. ACM, 2013.

[69] Avik Chaudhuri and Jeffrey S Foster. Symbolic Security Analysis of Ruby-on-Rails Web
Applications. In Proceedings of the 17th ACM Conference on Computer and Communications
Security (CCS ’10), pages 585–594. ACM, 2010.

[70] David Chaum. The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability. Journal of Cryptology, 1(1):65–75, 1988.

109

[71] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri De Ruiter,
and Alan T Sherman. cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic
Operations. In International Conference on Applied Cryptography and Network Security,
pages 557–578. Springer, 2017.

[72] David L Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[73] Eric Yawei Chen, Jason Bau, Charles Reis, Adam Barth, and Collin Jackson. App Isolation:
Get the Security of Multiple Browsers with Just One. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS ’11), pages 227–238. ACM,
2011.

[74] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Charlie Hu, Maruti Gupta, and Rath Van-
nithamby. Smartphone Energy Drain in the Wild: Analysis and Implications. ACM SIG-
METRICS Performance Evaluation Review, 43(1):151–164, 2015.

[75] Raymond Cheng, Will Scott, Irene Zhang, Thomas Anderson, Arvind Krishnamurthy, and
Bryan Parno. Talek: Private Group Messaging with Indistinguishable Access Patterns. Tech-
nical Report UW-CSE-16-11-01, University of Washington Computer Science and Engineer-
ing, Seattle, Washington, Nov 2016.

[76] Raymond Cheng, William Scott, Paul Ellenbogen, Jon Howell, Franziska Roesner, Arvind
Krishnamurthy, and Thomas Anderson. Radiatus: A Shared-Nothing Server-Side Web Ar-
chitecture. In Proceedings of the Seventh ACM Symposium on Cloud Computing, SoCC ’16,
pages 237–250, New York, NY, USA, 2016. ACM.

[77] Raymond Cheng, William. Scott, Arvind. Krishnamurthy, and Thomas Anderson. FreeDOM:
a new baseline for the web. In Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, pages 121–126. ACM, 2012.

[78] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private Information
Retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[79] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-Secure ORAM with O(log2N)
Overhead. In 20th Annual International Conference on the Theory and Applications of Cryp-
tology and Information Security (ASIACRYPT 2014), pages 62–81. 2014.

[80] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Designing Privacy Enhancing
Technologies (PETS ’01), pages 46–66. Springer, 2001.

[81] William R Cook and Siddhartha Rai. Safe Query Objects: Statically Typed Objects as
Remotely Executable Queries. In 27th International Conference on Software Engineering
(ICSE ’05), pages 97–106. IEEE, 2005.

[82] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (SOCC ’10), pages 143–154, 2010.

110

[83] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Googles Globally Distributed Database. ACM Transactions
on Computer Systems (TOCS), 31(3):8, 2013.

[84] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An Anonymous Messaging
System Handling Millions of Users. In 2015 IEEE Symposium on Security and Privacy (SP
’15), pages 321–338. IEEE, 2015.

[85] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Accountable Anonymous Group Messaging.
In Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS
’10), pages 340–350. ACM, 2010.

[86] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. Proactively Accountable
Anonymous Messaging in Verdict. In 22nd USENIX Security Symposium, pages 147–162,
2013.

[87] Richard Cox, Jacob Gorm Hansen, Steven Gribble, and Henry Levy. A Safety-oriented
Platform for Web Applications. In 2006 IEEE Symposium on Security and Privacy (SP ’06),
pages 15–pp. IEEE, 2006.

[88] Sophie Curtis. Barclays: 97 Percent of Data Breaches still due to SQL Injection. http:

//news.techworld.com/security/3331283/

[89] Wei Dai, Yarkın Doröz, and Berk Sunar. Accelerating NTRU-based Homomorphic Encryption
using GPUs. In High Performance Extreme Computing Conference (HPEC), 2014 IEEE,
pages 1–6. IEEE, 2014.

[90] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a Type III
Anonymous Remailer Protocol. In 2003 IEEE Symposium on Security and Privacy (SP ’03),
pages 2–15. IEEE, 2003.

[91] George Danezis and Andrei Serjantov. Statistical Disclosure or Intersection Attacks on
Anonymity Systems. In International Workshop on Information Hiding, pages 293–308, 2004.

[92] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing ORAM Re-
sponse Times for Bursty Access Patterns. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 749–764, 2014.

[93] Benjamin Davis and Hao Chen. DBTaint: Cross-application Information Flow Tracking via
Databases. In 2010 USENIX Conference on Web Application Development, 2010.

[94] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008.

[95] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally Robust Private Information
Retrieval. In 21st USENIX Security Symposium (USENIX Security 12), pages 269–283, 2012.

http://news.techworld.com/security/3331283/
http://news.techworld.com/security/3331283/

111

[96] Martin Dietzfelbinger and Christoph Weidling. Balanced Allocation and Dictionaries with
Tightly Packed Constant Size Bins. Theoretical Computer Science, 380(1):47–68, 2007.

[97] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation Onion
Router. In USENIX Security, 2004.

[98] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chunwang
Zhang. M2R: Enabling Stronger Privacy in MapReduce Computation. In 24th USENIX
Security Symposium (USENIX Security 15), pages 447–462, 2015.

[99] Colin Dixon, Thomas E Anderson, and Arvind Krishnamurthy. Phalanx: Withstanding
Multimillion-Node Botnets. In 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’08), volume 8, pages 45–58, 2008.

[100] Fred Douglis and John Ousterhout. Transparent Process Migration: Design Alternatives and
the Sprite Implementation. Software: Practice and Experience, 21(8):757–785, 1991.

[101] Cynthia Dwork. Differential Privacy. In Automata, languages and programming, pages 1–12.
2006.

[102] Cynthia Dwork. Differential Privacy: A Survey of Results. In Theory and applications of
models of computation, pages 1–19. 2008.

[103] Michael Egorov and MacLane Wilkison. ZeroDB Whitepaper, 2016.

[104] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exokernel: an Operating
System Architecture for Application-Level Resource Management. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP ’95), pages 251–266. ACM, De-
cember 1995.

[105] IDG Enterprise. Cloud Computing Survey. 2016.

[106] Anthony Ephremides, Jeffrey E Wieselthier, and Dennis J Baker. A Design Concept for
Reliable Mobile Radio Networks with Frequency Hopping Signaling. Proceedings of the IEEE,
75(1):56–73, 1987.

[107] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Randomized Aggre-
gatable Privacy-Preserving Ordinal Response. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14), pages 1054–1067. ACM,
2014.

[108] Joan Feigenbaum and Bryan Ford. Seeking Anonymity in an Internet Panopticon. Commu-
nications of the ACM, 58(10):58–69, 2015.

[109] Ariel J Feldman, Aaron Blankstein, Michael J Freedman, and Edward W Felten. Social
Networking with Frientegrity: Privacy and Integrity with an Untrusted Provider. In 21st
USENIX Security Symposium (USENIX Security ’12), pages 647–662, 2012.

112

[110] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. Toward
Automated Detection of Logic Vulnerabilities in Web Applications. In USENIX Security
Symposium, pages 143–160, 2010.

[111] Michael J Freedman, Emil Sit, Josh Cates, and Robert Morris. Introducing Tarzan, a Peer-
to-Peer Anonymizing Network Layer. In Peer-to-Peer Systems, pages 121–129. 2002.

[112] Kevin Fu, M Frans Kaashoek, and David Mazieres. Fast and Secure Distributed Read-Only
File System. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’00), pages 13–13. USENIX Association, 2000.

[113] Jun Furukawa and Kazue Sako. An Efficient Scheme for Proving a Shuffle. In Advances in
Cryptology (CRYPTO 2001), pages 368–387, 2001.

[114] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

[115] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova, and Daniel
Wichs. Optimizing ORAM and Using it Efficiently for Secure Computation. In Proceedings
on Privacy Enhancing Technologies (PETS ’13), pages 1–18, 2013.

[116] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic Evaluation of the AES Circuit.
In Advances in Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

[117] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C. Mitchell,
and Alejandro Russo. Hails: Protecting Data Privacy in Untrusted Web Applications. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design and Implementation
(OSDI ’12), pages 47–60, 2012.

[118] Ian Goldberg. Improving the Robustness of Private Information Retrieval. In 2007 IEEE
Symposium on Security and Privacy (SP ’07), pages 131–148. IEEE, 2007.

[119] Oded Goldreich. Towards a Theory of Software Protection and Simulation by Oblivious
RAMs. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages
182–194. ACM, 1987.

[120] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the Cryptographic Applications of
Random Functions. In Workshop on the Theory and Application of Cryptographic Techniques,
pages 276–288. Springer, 1984.

[121] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious
RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[122] Philippe Golle and Ari Juels. Dining Cryptographers Revisited. In Advances in Cryptology
(Eurocrypt 2004), pages 456–473, 2004.

[123] Paul Graham and Robert Morris. Arc Forum. http://arclanguage.org/forum 2008.

crypto.stanford.edu/craig
http://arclanguage.org/forum

113

[124] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical Privacy in Online Advertising.
In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI ’11), pages 13–13. USENIX Association, 2011.

[125] Ceki Gülcü and Gene Tsudik. Mixing E-mail with Babel. In Proceedings of the Symposium
on Network and Distributed System Security (NDSS ’96), pages 2–16. IEEE, 1996.

[126] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath TV Setty, Lorenzo Alvisi, and
Michael Walfish. Scalable and Private Media Consumption with Popcorn. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’16), Santa Clara, CA,
March 2016. USENIX Association.

[127] Erika Harrell and Lynn Langton. Victims of identity theft, 2012. http://www.bjs.gov/

content/pub/ascii/vit12.txt 2013.

[128] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang,
and Brian Zill. Ironclad Apps: End-to-End Security via Automated Full-System Verification.
In Proceedings of the Symposium on Operating Systems Design and Implementation (OSDI
’14), pages 165–181, 2014.

[129] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
MINIX 3: a Highly Reliable, Self-Repairing Operating System. SIGOPS Operating Systems
Review, 40(3):80–89, July 2006.

[130] Jason I Hong and James A Landay. An Architecture for Privacy-Sensitive Ubiquitous Com-
puting. In Proceedings of the 2nd International Conference on Mobile Systems, Applications,
and Services, pages 177–189. ACM, 2004.

[131] Jon Howell, Collin Jackson, Helen J Wang, and Xiaofeng Fan. MashupOS: Operating System
Abstractions for Client Mashups. In Hot Topics in Operating Systems (HotOS ’07), volume 7,
pages 1–7, 2007.

[132] Jon Howell, Bryan Parno, and J Douceur. Embassies: Radically Refactoring the Web.
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13), 2013.

[133] Galen C Hunt and James R Larus. Singularity: Rethinking the Software Stack. ACM SIGOPS
Operating Systems Review, 41(2):37–49, 2007.

[134] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. Ryoan: A
Distributed Sandbox for Untrusted Computation on Secret Data. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16), pages 533–549, 2016.

[135] Lon Ingram and Michael Walfish. TreeHouse: Javascript Sandboxes to Help Web Developers
Help Themselves. In Proceedings of the USENIX Annual Technical Conference (ATC ’12),
2012.

[136] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access Pattern Disclo-
sure on Searchable Encryption: Ramification, Attack and Mitigation. In Proceedings of the

http://www.bjs.gov/content/pub/ascii/vit12.txt
http://www.bjs.gov/content/pub/ascii/vit12.txt

114

Symposium on Network and Distributed System Security (NDSS ’12), volume 20, page 12,
2012.

[137] Anja Jerichow, Jan Muller, Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner.
Real-time Mixes: A Bandwidth-Efficient Anonymity Protocol. IEEE Journal on Selected
Areas in Communications, 16(4):495–509, 1998.

[138] Nicholas Jones, Matvey Arye, Jacopo Cesareo, and Michael J Freedman. Hiding Amongst
the Clouds: A Proposal for Cloud-based Onion Routing. In USENIX Workshop on Free and
Open Communications on the Internet (FOCI ’11), 2011.

[139] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic Voting Protocols: A Systems
Perspective. In USENIX Security, volume 5, pages 33–50, 2005.

[140] Sachin Katti, Jeff Cohen, and Dina Katabi. Information Slicing - Anonymity Using Unreliable
Overlays. In 4th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’07), pages 43–56, 2007.

[141] Dogan Kedogan, Dakshi Agrawal, and Stefan Penz. Limits of Anonymity in Open Environ-
ments. In International Workshop on Information Hiding, pages 53–69, 2002.

[142] Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich. Efficient Patch-based Auditing for
Web Application Vulnerabilities. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’12), pages 193–206. USENIX Association, 2012.

[143] Rob King and TippingPoint DVLabs. Pixaxe: a Declarative, Client-focused Web Application
Framework. In Proceedings of the 2010 USENIX Conference on Web Application Develop-
ment, pages 10–10. USENIX Association, 2010.

[144] Bryan Klimt and Yiming Yang. Introducing the Enron Corpus. In CEAS, 2004.

[145] Maxwell Krohn. Building Secure High-Performance Web Services with OKWS. In USENIX
Annual Technical Conference (ATC ’04), pages 185–198, 2004.

[146] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans Kaashoek, Eddie
Kohler, and Robert Morris. Information Flow Control for Standard OS Abstractions. In
ACM SIGOPS Operating Systems Review, volume 41, pages 321–334, 2007.

[147] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (In)security of Hash-Based Oblivi-
ous RAM and a New Balancing Scheme. In Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms, pages 143–156. SIAM, 2012.

[148] Eyal Kushilevitz and Rafail Ostrovsky. Replication is Not Needed: Single Database,
Computationally-Private Information Retrieval. In IEEE Symposium on Foundations of Com-
puter Science (FOCS ’97), page 364. IEEE, 1997.

[149] Young Hyun Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An Efficient
Communication System with Strong Anonymity. In Proceedings on Privacy Enhancing Tech-
nologies (PETS ’16), 2016.

115

[150] David Lazar and Nickolai Zeldovich. Alpenhorn: Bootstrapping Secure Communication with-
out Leaking Metadata. In 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI ’16), 2016.

[151] Sangmin Lee, Edmund L Wong, Deepak Goel, Mike Dahlin, and Vitaly Shmatikov. πBox: A
Platform for Privacy-Preserving Apps. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’13), pages 501–514, 2013.

[152] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph Evolution: Densification and
Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):2,
2007.

[153] Jure Leskovec, Kevin Lang, Anirban Dasgupta, and Michael Mahoney. Community Structure
in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters.
Internet Mathematics, 6(1):29–123, 2009.

[154] Jinyuan Li, Maxwell Krohn, David Mazieres, and Dennis Shasha. SUNDR: Secure Untrusted
Data Repository. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’04), 2004.

[155] Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist, and Joy Zhang.
Expectation and Purpose: Understanding Users’ Mental Models of Mobile App Privacy
Through Crowdsourcing. In Proceedings of the 2012 ACM Conference on Ubiquitous Com-
puting, UbiComp ’12, pages 501–510, New York, NY, USA, 2012. ACM.

[156] Kaisen Lin, David Chu James Mickens, Li Zhuang Feng Zhao, and Jian Qiu. Gibraltar:
Exposing Hardware Devices to Web Pages using AJAX. In Proceedings of the 3rd USENIX
Conference on Web Application Development, pages 7–7. USENIX Association, 2012.

[157] Derrell Lipman. LIBERATED: a Fully In-browser Client and Server Web Application Debug
and Test Environment. PhD thesis, University of Massachusetts, 2011.

[158] Yabing Liu, Krishna P Gummadi, Balachander Krishnamurthy, and Alan Mislove. Analyzing
Facebook Privacy Settings: User Expectations vs. Reality. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet Measurement Conference (IMC ’11), pages 61–70. ACM,
2011.

[159] Jacob R Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua Schiffman.
Shroud: Ensuring Private Access to Large-Scale Data in the Data Center. In 11th USENIX
Conference on File and Storage Technologies (FAST ’13), pages 199–213, 2013.

[160] Wouter Lueks and Ian Goldberg. Sublinear Scaling for Multi-Client Private Information
Retrieval. In International Conference on Financial Cryptography and Data Security, pages
168–186, 2015.

[161] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli. Side-channel Power Anal-
ysis of a GPU AES Implementation. In 33rd IEEE International Conference on Computer
Design (ICCD ’15), pages 281–288. IEEE, 2015.

116

[162] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike Dahlin,
and Michael Walfish. Depot: Cloud Storage with Minimal Trust. ACM Transactions on
Computer Systems (TOCS), 29(4):12, 2011.

[163] Nick Mathewson and Roger Dingledine. Practical Traffic Analysis: Extending and Resisting
Statistical Disclosure. In Proceedings on Privacy Enhancing Technologies (PETS ’04), pages
17–34, 2004.

[164] Russell A McClure and Ingolf H Krüger. SQL DOM: Compile Time Checking of Dynamic
SQL Statements. In 27th International Conference on Software Engineering (ICSE ’05),
pages 88–96. IEEE, 2005.

[165] Susan E McGregor, Polina Charters, Tobin Holliday, and Franziska Roesner. Investigating the
Computer Security Practices and Needs of Journalists. In USENIX Security, pages 399–414,
2015.

[166] Susan E McGregor, Franziska Roesner, and Kelly Caine. Individual versus Organizational
Computer Security and Privacy Concerns in Journalism. Proceedings on Privacy Enhancing
Technologies (PETS ’16), 2016(4):418–435, 2016.

[167] Frank McSherry and Kunal Talwar. Mechanism Design via Differential Privacy. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’07), pages 94–103.
IEEE, 2007.

[168] Frank D McSherry. Privacy Integrated Queries: an Extensible Platform for Privacy-
Preserving Data Analysis. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 19–30. ACM, 2009.

[169] James Mickens and Mohan Dhawan. Atlantis: Robust, Extensible Execution Environments
for Web Applications. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11), pages 217–231. ACM, 2011.

[170] Microsoft Patterns and Practices. Code Review. http://msdn.microsoft.com/en-
us/library/ff648637.aspx.

[171] Alexander Moshchuk, Tanya Bragin, Damien Deville, Steven Gribble, and Henry Levy.
Spyproxy: Execution-based Detection of Malicious Web Content. In 16th USENIX Secu-
rity Symposium, number 3, pages 1–16. USENIX Association, 2007.

[172] Sape J Mullender, Guido Van Rossum, AS Tananbaum, Robbert Van Renesse, and Hans
Van Staveren. Amoeba: A Distributed Operating System for the 1990s. Computer, 23(5):44–
53, 1990.

[173] Daniel Myers, Jennifer Carlisle, James Cowling, and Barbara Liskov. MapJAX: Data Struc-
ture Abstractions for Asynchronous Web Applications. In Proceedings of the 2007 USENIX
Annual Technical Conference (ATC ’07), 2007.

[174] National Vulnerability Database. Vulnerability Summary for CVE-2014-7235. https://web.
nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-7235 2014.

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-7235
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-7235

117

[175] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference Attacks on Property-
Preserving Encrypted Databases. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS ’15), pages 644–655. ACM, 2015.

[176] C Andrew Neff. Verifiable Mixing (Shuffling) of ElGamal Pairs. VHTi Technical Document,
VoteHere, Inc, 2003.

[177] Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen Hunt.
Helios: Heterogeneous Multiprocessing with Satellite Kernels. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (SOSP ’09), pages 221–234.
ACM, 2009.

[178] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You Are What You Include: Large-
scale Evaluation of Remote JavaScript Inclusions. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS ’12), 2012.

[179] Femi Olumofin and Ian Goldberg. Revisiting the Computational Practicality of Private In-
formation Retrieval. In Financial Cryptography and Data Security, pages 158–172. 2011.

[180] Opera Mediaworks. State of Mobile Advertising - 2015 Q2. http://operamediaworks.com/
innovation-and-insights/

[181] Rafail Ostrovsky. Efficient Computation on Oblivious RAMs. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, pages 514–523. ACM, 1990.

[182] Rafail Ostrovsky and Victor Shoup. Private Information Storage (Extended Abstract). In
Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC
’97, pages 294–303, New York, NY, USA, 1997. ACM.

[183] John K Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N. Nelson, and Brent B.
Welch. The Sprite Network Operating System. Computer, 21(2):23–36, 1988.

[184] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. In European Symposium on
Algorithms, pages 121–133, 2001.

[185] Pascal Paillier et al. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Eurocrypt, volume 99, pages 223–238. Springer, 1999.

[186] Ioannis Papagiannis, Matteo Migliavacca, and Peter Pietzuch. PHP Aspis: Using Partial
Taint Tracking to Protect Against Injection Attacks. In 2nd USENIX Conference on Web
Application Development, page 13, 2011.

[187] Bryan Parno, Jonathan M McCune, Dan Wendlandt, David G Andersen, and Adrian Perrig.
CLAMP: Practical Prevention of Large-Scale Data Leaks. In 30th IEEE Symposium on
Security and Privacy (SP ’09), pages 154–169. IEEE, 2009.

[188] Vern Paxson. Bro: a System for Detecting Network Intruders in Real-Time. Computer
Networks, 31(23-24):2435–2463, 1999.

http://operamediaworks.com/innovation-and-insights/
http://operamediaworks.com/innovation-and-insights/

118

[189] Cam Pedersen and David Dahl. Crypton: Zero-Knowledge Application Framework, 2014.

[190] Ponemon Institute. 2013 Cost of a Data Breach Study: Global Analysis. http://www.

ponemon.org/

[191] Ponemon Institute. 2017 Cost of a Data Breach Study. http://www.ponemon.org/

[192] Lucian Popa, Ali Ghodsi, and Ion Stoica. HTTP as the Narrow Waist of the Future Internet.
In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, page 6.
ACM, 2010.

[193] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan. CryptDB:
Protecting Confidentiality with Encrypted Query Processing. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP ’11), pages 85–100. ACM,
2011.

[194] Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai Zeldovich, Frans
Kaashoek, and Hari Balakrishnan. Building Web Applications on Top of Encrypted Data
Using Mylar. In USENIX Symposium of Networked Systems Design and Implementation
(NSDI ’14), 2014.

[195] K.S. Ramesh. Design and Development of MINIX Distributed Operating System. In Pro-
ceedings of the ACM Sixteenth Annual Conference on Computer Science, page 685. ACM,
1988.

[196] Ashwini Rao, Florian Schaub, Norman Sadeh, Alessandro Acquisti, and Ruogu Kang. Expect-
ing the Unexpected: Understanding Mismatched Privacy Expectations Online. In Symposium
on Usable Privacy and Security (SOUPS), 2016.

[197] Michael G Reed, Paul F Syverson, and David M Goldschlag. Anonymous Connections and
Onion Routing. Selected Areas in Communications, IEEE Journal on, 16(4):482–494, 1998.

[198] Charles Reis and Steven Gribble. Isolating Web Programs in Modern Browser Architectures.
In Proceedings of the 4th ACM European Conference on Computer Systems, pages 219–232.
ACM, 2009.

[199] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for Web Transactions. ACM
Transactions on Information and System Security (TISSEC), 1(1):66–92, 1998.

[200] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes. Recon:
Revealing and Controlling PII Leaks in Mobile Network Traffic. In Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services, pages 361–
374. ACM, 2016.

[201] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten Van Dijk,
and Srinivas Devadas. Constants Count: Practical Improvements to Oblivious RAM. In 24th
USENIX Security Symposium (USENIX Security 15), pages 415–430, 2015.

http://www.ponemon.org/
http://www.ponemon.org/
http://www.ponemon.org/

119

[202] David Richardson and Steven Gribble. Maverick: Providing Web Applications with Safe and
Flexible Access to Local Devices. In Proceedings of the 2011 USENIX Conference on Web
Application Development (WebApps ’11), volume 11, 2011.

[203] Ronald Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining Digital Signa-
tures and Public-key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[204] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA, volume 99,
pages 229–238, 1999.

[205] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid
Verbauwhede. Compact Ring-LWE Cryptoprocessor. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 371–391. Springer, 2014.

[206] Jerome Saltzer and Michael Schroeder. The Protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9):1278–1308, 1975.

[207] Mike Samuel, Prateek Saxena, and Dawn Song. Context-sensitive Auto-Sanitization in Web
Templating Languages using Type Qualifiers. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS ’11), pages 587–600. ACM, 2011.

[208] Ismail San, Nuray At, Ibrahim Yakut, and Huseyin Polat. Efficient Paillier Cryptoprocessor
for Privacy-Preserving Data Mining. Security and Communication Networks, 9(11):1535–
1546, 2016.

[209] Nuno Santos, Rodrigo Rodrigues, Krishna P Gummadi, and Stefan Saroiu. Policy-sealed
Data: A New Abstraction for Building Trusted Cloud Services. In USENIX Security, 2012.

[210] Len Sassaman, Bram Cohen, and Nick Mathewson. The Pynchon Gate: A Secure Method of
Pseudonymous Mail Retrieval. In Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, pages 1–9. ACM, 2005.

[211] Prateek Saxena, David Molnar, and Benjamin Livshits. SCRIPTGARD: Automatic Context-
sensitive Sanitization for Large-scale Legacy Web Applications. In Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS ’11), pages 601–614.
ACM, 2011.

[212] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria
Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy Data Analytics in the Cloud using
SGX. In IEEE Symposium on Security and Privacy (SP ’15), pages 38–54. IEEE, 2015.

[213] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. Malware Guard Extension: Using SGX to Conceal Cache Attacks. arXiv preprint
arXiv:1702.08719, 2017.

[214] Radu Sion and Bogdan Carbunar. On the Practicality of Private Information Retrieval. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS ’07), 2007.

120

[215] Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh, Dan
Williams, and Fred B Schneider. Logical Attestation: an Authorization Architecture for
Trustworthy Computing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP ’11), pages 249–264. ACM, 2011.

[216] Emin Gün Sirer, Sharad Goel, Mark Robson, and Doan Engin. Eluding Carnivores: File
Sharing with Strong Anonymity. In Proceedings of the 11th Workshop on ACM SIGOPS
European Workshop, page 19. ACM, 2004.

[217] Emil Stefanov and Elaine Shi. Multi-Cloud Oblivious Storage. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security (CCS ’13), pages 247–
258. ACM, 2013.

[218] Emil Stefanov and Elaine Shi. ObliviStore: High Performance Oblivious Cloud Storage. In
IEEE Symposium on Security and Privacy (SP ’13), pages 253–267. IEEE, 2013.

[219] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM: an Extremely Simple Oblivious RAM Protocol. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(CCS ’13), pages 299–310. ACM, 2013.

[220] Bryan Sullivan. Server-side JavaScript Injection. Black Hat USA, 2011.

[221] Chengzheng Sun and Clarence Ellis. Operational Transformation in Real-time Group Edi-
tors: Issues, Algorithms, and Achievements. In Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work, pages 59–68. ACM, 1998.

[222] Fangqi Sun, Liang Xu, and Zhendong Su. Static Detection of Access Control Vulnerabilities
in Web Applications. In USENIX Security Symposium, 2011.

[223] Latanya Sweeney. k-anonymity: A Model for Protecting Privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[224] Jeff Terrace, Stephen Beard, and Naga Praveen Kumar Katta. JavaScript in JavaScript
(js.js): Sandboxing Third-party Scripts. In Proceedings of the USENIX Conference on Web
Application Development. USENIX Association, 2012.

[225] Bryce Thomas, Raja Jurdak, and Ian Atkinson. SPDYing up the Web. Communications of
the ACM, 55(12):64–73, December 2012.

[226] Amin Tootoonchian, Stefan Saroiu, Yashar Ganjali, and Alec Wolman. Lockr: Better Pri-
vacy for Social Networks. In Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies, pages 169–180. ACM, 2009.

[227] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and
Matthew Smith. SoK: Secure Messaging. In IEEE Symposium on Security and Privacy (SP
’15), pages 232–249. IEEE, 2015.

[228] US Bureau of Justice Statistics. Victims of Identity Theft, 2014. https://www.bjs.gov/

https://www.bjs.gov/

121

[229] U.S.C. 18 U.S. Code 2705 - Delayed notice. Available at: https://www.law.cornell.edu/
uscode/text/18/2705.

[230] U.S.C. 18 U.S. Code 2709 - Counterintelligence access to telephone toll and transactional
records. Available at: https://www.law.cornell.edu/uscode/text/18/2709.

[231] U.S.C. 18 U.S. Code 3123 - Issuance of an order for a pen register or a trap and trace device.
Available at: https://www.law.cornell.edu/uscode/text/18/3123.

[232] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: Scalable
Private Messaging Resistant to Traffic Analysis. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15), pages 137–152. ACM, 2015.

[233] Giovanni Vigna, William Robertson, Vishal Kher, and Richard A Kemmerer. A Stateful
Intrusion Detection System for World-wide Web Servers. In 19th Annual Computer Security
Applications Conference. IEEE, 2003.

[234] Stephen T. Vinter and Richard E. Schantz. The Cronus Distributed Operating System. In
Proceedings of the 2nd Workshop on Making Distributed Systems Work, EW 2, pages 1–3,
New York, NY, USA, 1986. ACM.

[235] F. Wang, J. Mickens, N. Zeldovich, and V. Vaikuntanathan. Sieve: Cryptographically En-
forced Access Control for User Data in Untrusted Clouds. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’16), Santa Clara, CA, 2016.

[236] Helen J Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and Communication
Abstractions for Web Browsers in MashupOS. In ACM SIGOPS Operating Systems Review,
volume 41, pages 1–16. ACM, 2007.

[237] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On Tightness of the Goldreich-
Ostrovsky Lower Bound. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15), pages 850–861. ACM, 2015.

[238] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wether-
all. Demystifying Page Load Performance with WProf. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, pages 473–486. USENIX As-
sociation, 2013.

[239] Wang Wei. Flickr Vulnerable to SQL Injection and Remote Code Execution Flaws. http:

//thehackernews.com/2014/04/flickr-vulnerable-to-sql-injection-and.html?m=1

[240] Suzanne P. Weisband and Bruce A. Reinig. Managing User Perceptions of Email Privacy.
Communications of the ACM, 38(12):40–47, December 1995.

[241] Andrew Whitaker, Marianne Shaw, and Steven Gribble. Scale and Performance in the Denali
Isolation Kernel. ACM SIGOPS Operating Systems Review, 36(SI):195–209, 2002.

https://www.law.cornell.edu/uscode/text/18/2705
https://www.law.cornell.edu/uscode/text/18/2705
https://www.law.cornell.edu/uscode/text/18/2709
https://www.law.cornell.edu/uscode/text/18/3123
http://thehackernews.com/2014/04/flickr-vulnerable-to-sql-injection-and.html?m=1
http://thehackernews.com/2014/04/flickr-vulnerable-to-sql-injection-and.html?m=1

122

[242] James Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael Ernst,
and Thomas Anderson. Verdi: A Framework for Formally Verifying Distributed System
Implementations. In Proceedings of the 2015 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15), 2015.

[243] Peter Williams, Radu Sion, and Alin Tomescu. PrivateFS: A Parallel Oblivious File System.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security
(CCS ’12), pages 977–988. ACM, 2012.

[244] Edward Wobber, Mart́ın Abadi, Michael Burrows, and Butler Lampson. Authentication in
the Taos Operating System. ACM Transactions on Computer Systems (TOCS ’94), 12(1):3–
32, 1994.

[245] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent
in Numbers: Making Strong Anonymity Scale. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), pages 179–182, 2012.

[246] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. Hang with your Buddies to Resist In-
tersection Attacks. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS ’13), pages 1153–1166. ACM, 2013.

[247] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making Infor-
mation Flow Explicit in HiStar. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), pages 263–278, 2006.

[248] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and Shuo Chen. Sidebuster: Automated
Detection and Quantification of Side-channel Leaks in Web Application Development. In
Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS
’10), pages 595–606. ACM, 2010.

[249] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E Gonzalez,
and Ion Stoica. Opaque: An Oblivious and Encrypted Distributed Analytics Platform. In
USENIX Symposium on Networked Systems Design and Implementation (NSDI ’17), pages
283–298, 2017.

	List of Figures
	Introduction
	User Privacy in the Cloud
	Thesis Overview
	Securing Existing Cloud Applications from External Threats
	Designing an Oblivious Messaging Service
	Summary of Contributions

	Background and Related Work
	Existing Cloud Applications
	External Threats
	Insider Threats
	Summary

	Securing Cloud Applications from External Intrusion
	Radiatus Design
	Implementation
	Evaluation
	Summary

	An Efficient and Scalable Oblivious Messaging Service
	Background
	Talek Design
	Talek with Idle Users
	Oblivious Logging
	Private Notifications
	Implementation
	Evaluation
	Summary

	Conclusion
	Bibliography

