
User scripting on Android using BladeDroid
Ravi Bhoraskar,, Dominic Langenegger†, Pingyang He,, Raymond Cheng,, Will Scott,, and

Michael D. Ernst,
,University of Washington {bhora, pingyh, ryscheng,wrs,mernst}@cs.washington.edu

†ETH Zurich, Switzerland dominicl@ethz.ch
Abstract
Compared to desktop and web applications, mobile appli-
cations have so far been developed in an extremely siloed
environment. The apps running on our phone are devel-
oped by a single entity with operating system protections
between sharing of data or code between programs. How-
ever, application extensibility is often desired. In the web,
a secondary ecosystem flourishes around browser exten-
sions, enabling users to customize the web as they wish.
This paper presents BladeDroid, a system enabling user
customization of mobile applications, using a novel com-
bination of bytecode rewriting and dynamic class loading.
We describe four extensions that we have built to evaluate
BladeDroid’s usability, robustness, and performance.

1 Introduction
In all mobile operating systems today, apps are large
binary silos that users can and must install in an all-or-
nothing proposition. However, users may want to cus-
tomize the behavior of the app beyond what the developer
provides. For example, a user may want to rearrange the
user interface to fit their usage patterns. In the current
mobile ecosystem, it is difficult to even write a simple ad
blocker without root access.

In this paper, we introduce BladeDroid, a system that
supports custom user scripts, which we call “Blades”, on
unmodified Android phones. While such extensibility has
been supported and built into web browsers for decades,
a number of unique challenges exist in the mobile space.

An extension system must enable custom user scripts
without the explicit support of the host operating system.
Requiring modification of the operating system would dra-
matically limit deployability. Likewise, the system must
adhere to the existing mobile operating system security
model. Unlike web apps where the DOM and client-side
JavaScript is fully accessible to other scripts, mobile apps
are opaque packaged binaries. An extension system then
needs to not only inject code into app store packages with-
out access to source code, but also provide hooks enabling
meaningful functionality.

By enabling custom user scripts in mobile applications,

BladeDroid opens a world of new customization possibil-
ities on smartphones. BladeDroid can be used for debug-
ging and fuzz testing, automating repetitive tasks, hiding
promotional content, changing visual layout, or even mod-
ifying the default behavior of existing apps. Like with
web extensions, one would expect some Blades to be
app specific, and others to generalize across several apps.
We have written four example Blades that will serve as
running examples for the rest of the paper:

Ad Blocker: An ad blocker enforces a blacklist of adver-
tising networks, removing relevant UI elements across all
applications.

Social Media Plugin: A “Like” or “Share” button is
inserted into every application to share the current app
context to a social media platform. For example, a user
can “like” level 10 of Angry Birds during gameplay and
post it to their social news feed.

Quiz Cheater: A custom script highlights the correct
answer in a specific quiz app, helping the user to win the
game.

Record and Replay: This script creates a visual overlay
over the UI and records user interactions. The action log
can then be replayed with the same timings to reproduce
previous interactions. Record and replay is a valuable
debugging tool [9].

Users interact with BladeDroid by installing a BladeM-
anager app from the Android app store, like any other
application. At run time, users can choose to inject
Blades into other applications from the BladeManager
app. BladeDroid uses a novel combination of bytecode
rewriting and dynamic class loading to instrument exist-
ing applications on the device to accept dynamic Blade-
loading. Because a Blade runs in the same sandboxed
environment as the app it is injected into, Blades are com-
patible with the existing Android security model. In fact,
the BladeManager app itself requires no more permissions
than the Google Play Store. As Blades are developed, we
expect the BladeManager app to facilitate discovery and
sharing. We believe BladeDroid can be released on exist-
ing app stores without modifying the underlying Android
OS and security model.

In the rest of the paper, we will elaborate on the follow-
ing contributions:

• We show how to enable custom user scripts on an un-
modified Android phone, using a novel combination of
bytecode-rewriting and dynamic class loading. (Sec-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’14, June 25-26, 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-3024-4/14/06 ...$15.00.

tion 3)
• We implemented BladeManager, a user-level applica-

tion that hooks into unmodified applications on the
phone and injects custom user-scripts (Blades) at run-
time. (Section 3)

• We demonstrate several Blades — an ad blocker, social
plugin, quiz cheater, and debugger tool — to show the
range of app extensions that are enabled by our system.
Preliminary results show low space and performance
overheads. (Section 4)

2 Background
Android is an open source mobile operating system (OS).
Android applications are written in Java and are compiled
to Dalvik bytecode. They are distributed as packages
with the bytecode and resource files. The Android OS
has a Dalvik virtual machine, which loads and runs the
application using a just-in-time compiler [3].

2.1 Android App Structure
Each Android app is organized as a set of screens that
users can navigate between, called Activities [1]. Each
Activity usually takes up the entire screen and consists
of UI elements, known as Views, such as textboxes, but-
tons, lists, and images. A View can be associated with
a callback function that is invoked when a user interacts
with the View. The developer defines these callbacks in
the Activity’s Java class. A new Activity is instantiated
using a runtime mechanism called an Intent.

2.2 Android Security
Android provides a manifest-based permission system,
where applications must explicitly declare permissions
for the resources they use. Examples of such permissions
include the INTERNET permission to access data on the
Internet or the READ EXTERNAL STORAGE permission to access
files on the external storage of the device (typically an SD
card).

Each Android application runs in a sandboxed environ-
ment with an isolated file system, and can only communi-
cate with other apps using an interprocess communication
mechanism.

3 Design and Implementation
BladeDroid was written with the following high-level
design goals:

Powerful for developers: The Blade API should be use-
ful across arbitrary Android apps, and should not require
the Blade developer to understand app-specific code un-
less the Blade specifically requires it. For example, the
same ad-blocker Blade should be able to run on any app
that displays an ad. In particular, the Blade API must
expose the UI and events of a host app to the Blade such
that it is easy to write concise Blades.

1 public interface Blade {
void onCreate(Activity activity,
Bundle savedInstanceState);

3 void onStart(Activity activity);
void onResume(Activity activity);

5 void onPause(Activity activity);
void onStop(Activity activity);

7 void onDestroy(Activity activity);
boolean onKeyDown(Activity activity
, int keyCode, KeyEvent event);

9 boolean onKeyLongPress(Activity
activity, int keyCode, KeyEvent
event);

boolean onKeyUp(Activity activity,
int keyCode, KeyEvent event);

11 }

Listing 1: The Blade Interface, with the methods implemented by all
user scripts in order to extend the functionality of existing Android
Activities.

Easy for users: It must be easy for a non-technical user to
dynamically load and run Blades at runtime. BladeDroid
needs to fit the user’s mental model of installing and
running apps, without understanding the technical details
of how apps are instrumented to support Blades.

Secure: A Blade should run in the same sandbox as the
host application it is injected into. As such from a security
perspective, the Blade cannot do more than the application
can. Furthermore, it must be impossible to inject Blades
without the explicit consent of the user.

Low Overhead: BladeDroid should impose little to no
overhead to the performance of existing applications when
no Blades are present. When Blades are injected into an
app, the act of loading a blade must have minimal effect
on the responsiveness and performance of the application.

3.1 The Blade API
Because Android does not inherently expose all UI ele-
ments and events in a structured DOM like the web does,
we need to create an API against which Blades can be
written. Listing 1 shows the Blade interface against which
all Blades are written. The Blade class definition may
contain a Java annotation BladeScope defining a filter for
Activities that it should run on using a regular expression
that is matched to the full Activity name. For example,
an ad-blocker may run on all activities, whereas a game
guide may be tailored to a specific activity.

The Blade API design closely mirrors the Android app
lifecycle itself. The Blade can register callbacks that are
fired when the app is created, destroyed, started, stopped,
paused, and resumed. The Blade is also given hooks
into physical button events (e.g. Home, Back, Volume).
Blades are passed a reference to the current Activity when
these callbacks are fired. Blades also have access to all of

the Android APIs that the host application has access to,
which allows it to programmatically modify the Activity’s
view and layouts.

3.2 Blade Ecosystem

Figure 1: The BladeDroid Ecosystem. (1) App developer submits
apps to App Store. (2) User downloads app from app store. (3) Blade
Manager uploads app to BladeDroid cloud and reinstalls the Blade-
enabled app. (4) Blade Developer submits Blade to Blade-store (5)
Blade Manager fetches and manages Blades.

Figure 1 shows how we envision BladeDroid would
extend the current application distribution. Users continue
to install applications from an app store (like Google
Play). In order to use BladeDroid, the user must install
a BladeManager app. With BladeManager, a user can
choose to instrument any existing installed application to
be Blade-enabled, which is necessary before any Blades
can be injected into that app. In this process, the installed
application package (APK) is sent to a BladeDroid cloud,
which performs the bytecode-rewriting and recompiles
the application with a BladeLoader and BladeExecutor.
The device then reinstalls the Blade-enabled application.

The BladeManager app a provides a Blade installa-
tion interface, allowing the user to download, install, and
uninstall Blades from an online BladeStore. The BladeM-
anager provides a nice user interface to let the user choose
which of the Blades to run on specific Blade-enabled apps.

The BladeManager internally organizes the Blades on
the external storage of the Android device, which acts as
a shared filesystem across apps.

3.3 Blade Injection
Because a mobile app is not directly programmable in
bytecode form, it needs to be instrumented so that Blades
written using the Blade API may be able to execute within
the context of an app. We used bytecode rewriting [10,
11] techniques to add a BladeLoader and a BladeExecutor
to an existing application.

BladeLoader: The BladeLoader executes when the ap-
plication first starts and contacts the BladeManager app
using the Android interprocess communication mecha-
nism (Binder). The BladeManager responds with a list of
Blades to load, as well as the location of the Blades on

Figure 2: The workflow of installing and executing Blades. (1)The
BladeLoader sends a request to the BladeManager. (2) BladeManager
responds with the location of Blade on the shared filesystem. (3) Blade-
Loader verifies the Blade and loads it in memory (4)The BladeExecutor
executes the Blade on the appropriate events at runtime.

external storage. Because all Blades must be signed by
the BladeStore, the BladeLoader can verify the signature
of each Blade. BladeLoader then uses Android’s Dynamic
Class Loading to load each Blade into memory. Figure 2
shows the relationship between the BladeLoader and the
BladeManager.

BladeExecutor: The BladeExecutor forwards all Activ-
ity lifecycle and key press events, triggering the respective
callback in the Blade when these events fire.

Our key observation is that these two techniques —
Bytecode Rewriting and Dynamic Class Loading — when
used together, create a powerful mechanism that enables
user-side programmability on traditionally unprogrammable
apps.

3.4 BladeDroid Cloud
The BladeDroid Cloud uses the Soot framework [12] to
perform bytecode rewriting, which adds the BladeLoader
and BladeExecutor to a given app. Using Soot, we convert
an Android application into Soot’s intermediate represen-
tation, Jimple, which is designed to ease analysis and ma-
nipulation. BladeDroid uses Soot’s class visitor methods
to iterate through all classes in the application, and deter-
mine the Activities. For all of the methods corresponding
to the ones in the Blade interface (creating them if neces-
sary), BladeDroid inserts code to call the corresponding
Blade methods. To read the Blades from external stor-
age, BladeDroid requires the READ EXTERNAL STORAGE per-
mission which it adds to the application during rewriting.

In the current implementation, we manually blade-
enable applications and sideload them back onto the de-
vice. As future work, future versions of the BladeManager
should automatically blade-enable applications on instal-
lation.

3.5 Security
Since Blades run within an existing application context,
they naturally run with the same permissions as their
host application, and cannot gain additional privileges

beyond what already has been received from the system
(except External Storage read permission, which is added
to enable Blade-loading). Similarly, the Blade is restricted
to the same sandbox.

By signing Blades, the system prevents the Blade-
Loader from arbitrary code. Furthermore because the
BladeLoader checks with the BladeManager app when an
app is first loaded, it can verify which Blades the user has
granted permission to run in the application. Note that the
BladeDroid cloud and BladeStore can easily merge with
an existing app store, such that the application is simply
recompiled to be Blade-enabled at install time.

4 Evaluation
This section describes our experience with applying Blade-
Droid to multiple mobile applications from the Google
Play Store including detailed evaluations on performance
and usability. Additionally, we identify the strengths and
limitations of the proposed model by evaluating what
types of user scripts are possible to implement and which
are not.

4.1 User Survey
We conducted a user survey to determine the value of
BladeDroid as perceived by users. The survey was dis-
tributed on the Android subreddit on Reddit1, where it
got 13 responses. We ask the respondents if they would
find user-scripting useful on mobile apps, and if so, what
some of those Blades would be. Of the 13 participants, 10
knew of multiple mobile applications that they would like
to customize. We list the possible Blades suggested by
the survey participants. Each of these can be built within
the BladeDroid framework.

Ad Blocker: An ad blocker was the most named exten-
sion in the survey. We explain our implementation of it in
Section 4.2.1.

Game cheating: Either helps the user by e.g. showing
her the right answers in a quiz game or directly gives her
high scores. We explain our implementation of one such
Blade in Section 4.2.3.

Automate repetitive tasks: Simplify tasks that are done
very often, for example automatically poke-back a friend
on the Facebook app.

Hide promotional content: Hide promotional tweets or
posts in the Twitter or Facebook app respectively. The
implementation of this Blade would be very similar to the
Ad Blocker.

App design: Change the user interface by adapting color,
element dimensions, or layout.

Launch screen change: Starts the app with a different
Activity. The survey participant suggested applying this
1http://reddit.com/r/android

(a) Without Ad Blocker (b) With Ad Blocker

Figure 3: Flappy Bird with and without Ad Blocker. Notice that the ad
on top of the screen has been removed in the second screenshot.

to the OneBusAway application2 in order to have it start
directly in the bookmarks page.

Although the data set may not be representative, we
conclude that user scripting on mobile platforms is indeed
something that users would use, if it’s simple enough to
do so. The user study also showed us some applications
for BladeDroid we had not thought of and allowed us to
analyze their feasibility.

4.2 Sample Blades
We wrote four Blades for four different applications, and
measure the ease and efficacy of using the Blade interface
(Section 4.3). The four Blades are described here. We
then run them in different apps which are rewritten by
BladeDroid, and measure the performance overheads of
running them (Section 4.4).

4.2.1 Ad Blocker
Ad libraries typically provide a custom UI control (View)
that app developers include in their app. This View then
serves ads at runtime. The Ad Blocker Blade contains
a list of known advertisement Views. Once an Activ-
ity is created, the Ad Blocker will recursively find all
AdView(s) in this Activity, and render them invisible.
Figure 3 demonstrates an example of running Ad Blocker.

4.2.2 Social Media plugin
Our social media plugin (called Socialify) adds a virtual
like button to every page of the app it is installed in.
Hitting the like button posts an update containing the
name of the app and contents of the page to the user’s
Facebook timeline. The Socialify Blade overrides the
long press event of the back button, which is then treated
as the Like button. Pressing this button gathers the app
2http://onebusaway.org

(a) Without Quiz Cheater (b) With Quiz Cheater

Figure 4: Cartoon Quiz with and without Quiz Cheater. Notice that the
correct answer is highlighted with surrounding asterisks in the second
screenshot.

and activity names, and creates an Intent with these as the
parameters. It then calls the Socialify app, which is also
installed on the phone, with this intent. The app in turn
posts the content to the user’s Facebook timeline.

4.2.3 Quiz Cheater

Quiz games like DuelClash, QuizUp or Cartoon Quiz [5]
give the user multiple possible answers to a question one
of which is correct. As a proof of concept implementation
of a game-cheater, we developed an app specific Blade
for the single player game Cartoon Quiz. The Blade im-
plementation uses the Java Reflection API to access fields
on the Activity that are known to contain the answers to
the questions displayed. It then modifies the layout of
the Activity to highlight the right answer, as shown in
Figure 4

4.2.4 Record and Replay

Record and Replay allows one to record UI-interactions
with an app, and replay them later. It is a valuable tech-
nique for debugging, as it allows reproduction of bugs.
It may also prove useful for users to navigate through a
complicated series of pages, for example to set up low
light settings in a Camera app or automate other repetitive
tasks (as mentioned in the user survey). Previous work
has enabled record and replay by modifying the operating
system, to interpose on the I/O event stream [9]. Blade-
Droid allows to do this without OS support. The record
part of the R&R-Blade adds a listener to the touch event
for each View in the layout and logs every interaction
with timing information. The replay part reads this log,
and performs the same touch events on the corresponding
Views, with the same timing delays.

Blade LOC Comment
AdBlocker 52 (see section 4.2.1)
Social Media Plugin 30+90 Additional app required

(see section 4.2.2)
QuizCheater 79 (see section 4.2.3)
Record & Replay 292 (see section 4.2.4)
Toast Blade 15 Shows a Toast message
Log Blade 14 Logs a simple message

Table 1: Lines of code (LOC) for implemented example Blades.

4.3 Ease of writing Blades
One of the primary design goals of the Blade API was
that writing Blades should be quick and easy, like writing
scripts for web apps. We list the entirety of the Ad Blocker
blade in the Appendix. For evaluation, we use the number
of lines of code as a proxy for ease of writing a Blade.
For each of the four Blades described earlier, as well as
two other “Hello World” Blades, we report the lines of
code in the Blade class in Table 1. The median LOC is
around 40, and even moderately complex Blades like the
Quiz Cheater and Ad Blocker have under a hundred lines
of code total, thus providing evidence for the ease of use
of the Blade API.

4.4 Performance and Overhead Metrics
This sections shows measurements to evaluate the over-
heads of using BladeDroid and discusses its performance.

For size overhead, we measure the change in size of an
Android package after Blade-enabling it. We use as our
dataset 176 randomly chosen apps from a set of 15749
apps crawled from the Google Play store in December
2013. Figure 5 shows the cumulative distribution function
(CDF) of the fraction increase in the size of the APK files
due to Blade-enabling. All the apps have less than 12%
increase in package size, with the 90th percentile having
an increase of 3.6%. We consider this an acceptable
overhead in storage.

Next, we measure the latency caused by the time taken
to load Blades into an app. To do this, we crated a mod-
ified version of the BladeLoader that logs the timing in-
formation for loading Blades. This includes the time for
extracting the Blade class from the JAR, and loading it
into the Dalvik Virtual Machine. We note that this delay
happens only when the app is started, and not on Activity
transitions, since Blades can reside in the app memory
across activities.

Figure 6 plots a graph of the load time with an increas-
ing number of Blades. We notice a linearly increasing
trend with a rising number of Blades, as expected. Note,
however, that even with 20 Blades, the load time is still
only 120 ms. An active Mozilla study [7] suggests that
the average load time for Android apps is of the order
of a few seconds. With an addition of the order of tens
of milliseconds, BladeDroid does not cause significant

Figure 5: CDF of the fraction increase in APK size, of 176
Blade-enabled apps. We see that 90% of all apps have a size
increase of less than 4%.

Figure 6: Plot of Blade loading time [ms] with varying number of
installed Blades, averaged over 10 runs. This process happens on
very application start.

overhead. The authors did not perceive an unusual lag in
a Blade-enabled app, even with 20 Blades loaded.

We note that the Blades themselves contain arbitrary
code, which runs within the context of the apps, and thus
different Blades themselves could have could have an
impact on latency, performance, and energy consumption
of apps.

5 Related Work
BladeDroid applies many ideas from web and desktop
extension frameworks to the mobile context. We also
draw on a set of instrumentation techniques in the mobile
space to transparently extend applications.

5.1 Web Application User Scripts
All major browsers provide extension APIs [2, 4]. These
APIs allow code to interact with websites programmat-
ically. GreaseMonkey [6] for Firefox popularized this
concept, allowing users to inject JavaScript on pages and
share their developed scripts. AdBlock Plus3 has become
one of the most popular browser extensions, preventing
websites from displaying advertisements. Unlike these
systems, BladeDroid extends applications without plat-
form support or a high-level semantic language.

5.2 Mobile Platform Instrumentation
Mobile instrumentation frameworks exist, rewriting ap-
plications to provide additional facilities. However, these
systems all require changing applications at compile-time.
SIF, the Selective Instrumentation Framework [10], per-
forms instrumentation based analyses built from a short
description in a custom Java-like language. This de-
scription is set at compile time, allowing for more dra-
matic changes to application logic than Blades. I-ARM-
DROID [8] allows users to specify a security policy for
Android API methods, and then implements this policy
through rewriting. BladeDroid is the first system that
we are aware of that allows users to extend applications
3https://adblockplus.org

without OS support or reinstallation.

6 Conclusion
We have proposed BladeDroid, a system which enables
user-side programmability for traditionally unprogrammable
mobile apps, using Blades. We proposed an API against
which these Blades can be written, and a novel combi-
nation of bytecode rewriting and dynamic class loading
that implements this interface on pre-existing apps in the
Play Store. We developed a BladeManager app allowing
users to easily install and remove Blades. Preliminary re-
sults showed that the overhead of BladeDroid is minimal,
and is vastly outweighed by the possibilities of writing
arbitrary mobile app extensions. With BladeDroid, we
have looked forwards to a rich ecosystem of Android
extensions.

7 References
[1] Android Activity.

http://developer.android.com/reference/android/app/
Activity.html.

[2] Chrome Extensions.
http://developer.chrome.com/extensions/index.html.

[3] Dalvik. http://source.android.com/devices/tech/dalvik/.
[4] Firefox Extensions.

https://developer.mozilla.org/Add-ons.
[5] Google Play Store. https://play.google.com/.
[6] GreaseMonkey. http://www.greasespot.net.
[7] Mozilla Eideticker Project. http://eideticker.mozilla.org.
[8] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen.

I-ARM-Droid: A Rewriting Framework for Reference
Monitors for Android Applications. In MoST, 2012.

[9] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran:
Timing- and touch-sensitive record and replay for android.
In ICSE, 2013.

[10] S. Hao, D. Li, W. G. Halfond, and R. Govindan. SIF: A
Selective Instrumentation Framework for Mobile
Applications. In MobiSys, 2013.

[11] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan,
I. Obermiller, and S. Shayandeh. Appinsight: Mobile app
performance monitoring in the wild. In OSDI, 2012.

[12] R. Valle-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java bytecode optimization
framework. In IBM CASC, 1999.

APPENDIX

1 public class AdsBlocker extends AbstractBlade {

3 private static HashSet<String> adViews = new HashSet<String>(Arrays.asList(
"com.google.ads.AdView",

5 "com.google.android.gms.ads.AdView",
"com.mopub.mobileads.MoPubView"));

7

public void onCreate(Activity activity, Bundle savedInstanceState) {
9 hideAllAdViews(activity.findViewById(android.R.id.content));

}
11

private void hideAllAdViews(View inputView) {
13 ViewGroup viewgroup = (ViewGroup) inputView;

int childCount = viewgroup.getChildCount();
15 for (int i = 0; i < childCount; i++) {

View v = viewgroup.getChildAt(i);
17 try {

String viewname = v.getClass().getName();
19 if (adViews.contains(viewname)) {

v.setVisibility(View.INVISIBLE);
21 continue;

}
23 } catch (Exception e) {

}
25 if (v instanceof ViewGroup) {

hideAllAdViews(v);
27 }

}
29 }
}

Listing 2: Code for the Ad Blocker Blade. On activity creation, it finds views with IDs of known advertisements, and hides them from view.

